Uncertainty Modeling Framework for Constraint-based Elementary Scenario Detection in Vision System

Carlos Crispim 1 François Bremond 1
1 STARS - Spatio-Temporal Activity Recognition Systems
CRISAM - Inria Sophia Antipolis - Méditerranée
Abstract : Event detection has advanced significantly in the past decades relying on pixel- and feature-level representations of video-clips. Although effective those representations have difficulty on incorporating scene se- mantics. Ontology and description-based approaches can explicitly em- bed scene semantics, but their deterministic nature is susceptible to noise from underlying components of vision systems. We propose a proba- bilistic framework to handle uncertainty on a constraint-based ontol- ogy framework for event detection. This work focuses on elementary event (scenario) uncertainty and proposes probabilistic constraints to quantify the spatial relationship between person and contextual objects. The uncertainty modeling framework is demonstrated on the detection of activities of daily living of participants of an Alzheimer's disease study, monitored by a vision system using a RGB-D sensor (Kinect , Microsoft c ) as input. Two evaluations were carried out: the first, a 3- fold cross-validation focusing on elementary scenario detection (n:10 par- ticipants); and the second devoted for complex scenario detection (semi- probabilistic approach, n:45). Results showed the uncertainty modeling improves the detection of elementary scenarios in recall (e.g., In zone phone: 85 to 100 %) and precision indices (e.g., In zone Reading: 54.71 to 73.15%), and the recall of Complex scenarios. Future work will extend the uncertainty modeling for composite event level.
Type de document :
Communication dans un congrès
Marco Cristani; Roberta Ferrario; Jason J. Corso. 1st International Workshop on Computer vision + ONTology Applied Cross-disciplinary Technologies in Conjunction with ECCV 2014, Sep 2014, Zurich, Switzerland. 2014
Liste complète des métadonnées

Littérature citée [23 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01054769
Contributeur : Carlos Crispim <>
Soumis le : vendredi 8 août 2014 - 15:21:34
Dernière modification le : mardi 24 juillet 2018 - 15:48:06
Document(s) archivé(s) le : mercredi 26 novembre 2014 - 16:11:15

Fichier

crispim_et_contact2014_pre_pap...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01054769, version 1

Collections

Citation

Carlos Crispim, François Bremond. Uncertainty Modeling Framework for Constraint-based Elementary Scenario Detection in Vision System. Marco Cristani; Roberta Ferrario; Jason J. Corso. 1st International Workshop on Computer vision + ONTology Applied Cross-disciplinary Technologies in Conjunction with ECCV 2014, Sep 2014, Zurich, Switzerland. 2014. 〈hal-01054769〉

Partager

Métriques

Consultations de la notice

645

Téléchargements de fichiers

192