
HAL Id: hal-01054827
https://inria.hal.science/hal-01054827

Submitted on 8 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

XML in Enterprise Systems: Its Roles and Benefits
Jaroslav Pokorný

To cite this version:
Jaroslav Pokorný. XML in Enterprise Systems: Its Roles and Benefits. IFIP TC 5 International
Conference on Enterprise Architecture, Integration and Interoperability (EAI2N) / Held as Part of
World Computer Congress (WCC), Sep 2010, Brisbane, Australia. pp.128-139, �10.1007/978-3-642-
15509-3_12�. �hal-01054827�

https://inria.hal.science/hal-01054827
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

XML in Enterprise Systems: its Roles and Benefits

Jaroslav Pokorný

Charles University, Faculty of Mathematics and Physics,

Malostranske nam. 25, 118 00 Praha 1, Czech Republic
pokorny@ksi.mff.cuni.cz

Abstract. Enterprise information integration (EII) requires an accurate, precise
and complete understanding of the disparate data sources, the needs of the
information consumers, and how these map to the business concepts of the
enterprise. In practice, such integration takes place in context of any enterprise
information system. In the paper we explain various approaches to EII, its
architectures as well as its association to enterprise application integration. We
justify why XML technology contributes to finding sufficiently powerful
support for EII. We present some features of the XML technology, mainly its
database part, and show how it is usable in EII.

Keywords: XML, enterprise information integration, XQuery, XSLT, Web
services, XML databases

1 Introduction

The language XML originally designed as a standard protocol for data exchange,
serves today as a data model and background for databases of XML documents. Its
main advantage is that it enables to create a background for applications beyond
conventional data models, i.e. everywhere where we need, e.g., hierarchical data
structures, recursive data structures, regular expressions, missing and/or duplicate
data, and other non-traditional data requirements. XML creates a technological
platform for Semantic Web.

A collection of languages, techniques, and standards developed by the World
Wide Web Consortium (W3C1), called XML technology today, contributes to many
application areas, as, e.g., B2B interactions, Web services, as well as, in general, to
improvement of inter- and intra-enterprise applications. In the paper, we focus just on
use of XML technology in enterprises.

Often an enterprise information system (EIS) is characterized as an information
and reporting tool for the preparation, visualization, and analysis of operational
enterprise data. An associated collection of activities and software components
supporting accessing data from any source systems is then called enterprise

information integration (EII). In other words, EII provides programmers with a
single-site image of disparate data that may be maintained in different formats,

1 http://www.w3.org/standards/xml/

retrieved via different application programming interfaces (APIs), and managed by
different remote servers. The analyst community and other observers talk often about
“virtual data federation”. Data integration is crucial in large enterprises that own a
multitude of data sources, like relational databases, Web services, files, and packaged
applications. The same holds for offering good search capabilities across amounts of
data sources on the Web.

Integration-related area contains also enterprise application integration (EAI).
EAI integrates application systems by allowing them to communicate and exchange
business transactions, messages, and data with each other using standard interfaces. It
enables applications to access data transparently without knowing its location or
format. EAI is usually employed for real-time operational business transaction
processing. It supports a data propagation approach to data integration. A strong
separation of EII and EAI can mean that enterprise data is accessed by an EII tool and
updated by an EAI tool. EII solutions today should address both application and
information integration.

A special form of data integration is required by data warehouses and business
intelligence. Extract, transform and load (ETL) processes were considered the most
effective way to load information into a data warehouse.

In general, EII needs [6] to

• support all information types, structured, unstructured and semi-structured, • provide for context, i.e., where does the information fit in the schema or
ontology of the receiving repository/application, and what are the relevant
behavioural constraints.

Many enterprises today are moving towards the adoption of service-oriented

architectures (SOAs) based on XML and Web services [5]. Web services represent a
less costly and loosely-coupled approach for EII. Often Web services are considered
as part of the EII whole. Consequently, a service composition gains strength in EIS
today. A relatively little work has been done to facilitate integration at the
presentation level, i.e. the development of user interfaces. This part of application
development in EIS belongs to the most time-consuming activities. Other direction of
the EAI industry is toward the use of an enterprise service bus (ESB) that supports the
interconnection of legacy and packaged applications, and also Web services.

XML, enabling to declare and enforce structure of content, plays an important
role both in EIS development and EII processes. The reason is simple. In the past, any
exchanging information between content repositories and data-oriented applications
within and across enterprise was very difficult due to incompatibility of supporting
systems. Even data warehouse solutions were considered inappropriate for supporting
such needs. EII vision is namely to provide tools for integrating data from multiple
sources without first loading their data into a central warehouse. EII should perform
the integration in real time on an on-demand basis. Emergence of XML made it
possible to build EII on an XML data model and query language XQuery, i.e. with
XQuery interface to these multiple sources.

The purpose of this work is to summarize some parts of the XML technology
relevant for EII and show, how XML databases can help to create more responsive
EII architectures. The remainder of the paper is organized as follows: Section 2
mentions some approaches to EII as well as commercial products based on these

 2

approaches. After summarizing some basics of XML database technology in Section
3, in Section 4 we focus on applications of XML databases in EII. We mention also
the concept of content management system there. Finally, Section 5 concludes and
lists future work.

2 EII: Approaches and Related Works

By [18] EII is defined as the integration of data from multiple systems into a unified,
consistent and accurate representation geared toward the viewing and manipulation of
the data. Data is aggregated, restructured and relabelled (if necessary) and presented
to the user. In viewing EII from a software engineering point of view, it is a type of
middleware that allows companies to combine data from disparate sources into a
single application.

 Application

EII Server

 Application

Logical data schema

Integration

Fig. 1. EII approach to data integration

EII is based on a more flexible form of integration than simple data integration.
EII data sources (DS) are viewed by applications as a single virtual database (see
Figure 1). EII is based on a framework that exposes rather declarative interface for
specification of integration requirements. EII provides applications a single, virtual

view across multiple data sources. Applications access data sources through these
views and through only one API of the EII server. Queries are transformed into
queries against data sources. In other terminology, this approach is based on
mediation. There is also a variant called federation, which integrates data by defining
mappings between all pairs of schemas of the member databases. This variant called
also a loosely coupled federated system is not broadly applied in real enterprise

Adapter

Database Application EAI Web service

DS
model

DS
model

DS
model

DS
model

Adapter Adapter Adapter

 3

environment because of the using of private protocol and data model, low
performance, laborious process, critical implementation conditions, immature
technology and the lack of reliable infrastructure [23]. Although the federated systems
are relatively easy to implement, they do not scale well. By [10] an information
integration infrastructure should support placing and managing data at multiple points
in the data hierarchy to improve performance and availability. By the way, most of
today’s EII systems are really federated information systems.

To implement mediation, EII requires an accurate, precise and complete
understanding of the disparate data sources, the needs of the information consumers,
and how data model is mapped into a single, generic representation – a logical data

schema that specifies the virtual view.
Therefore, the available approaches to EII can be considered based on the

underlying logical model, the data transformation framework, and the query interface.
Due to the well-known restrictions of relational data model in context of enterprise
variety of data, it is not too perspective solution now. For example, iWay Data Hub2
enables to create reusable relational views.

Purely XML-oriented approaches use XML as the logical data model. All data
sources are represented as XML document collection and XQuery serves as the
language of transformation as well as the query language. The EII server is a virtual
XML database. As examples in this category we can mention Ipedo’s XIP3 and
Liquid Data for WebLogic [3]. In XIP it is possible to query not only collections of
XML documents, which is the best known use of XQuery, but also relational
databases, web services, common data formats like CSV and fixed length formats. In
addition, the Ipedo XQuery engine also allows users to create custom data sources
and make them available to XQuery developers. In combination with the distributed
SQL query engine, also offered in XIP, these capabilities represent one of the most
powerful ways for EII.

However, a use of XML can be only a part of EII solution. There are tools, e.g.,
MetaMatrix [7], providing an integrated environment for modelling different types of
data and information systems. In MetaMatrix different layers of metadata are created
in more domain-specific languages (including XML Schema), i.e. XML is not a target
language here. The support for multiple metamodels is ensured by OMG’s MOF
(Metadata Object Facility) architecture, i.e. relationships among metadata of different
layers are expressed by mapping specifying transformations.

Although all the approaches have their advantages and disadvantages, the XML
approach is excellent in data modelling and query capabilities, in particular with
applications that use data from non-relational data sources, such as message queues,
EJBs, XML documents, and Web services.

A more advanced approach to integration in EIS is enterprise mashups. Remind
that a mashup is a Web application that combines content from two or more
applications to create a new application. The applications can be built on-the-fly to
solve a specific business problem. For example, Damia [1] is inspired by the Web 2.0
mashup phenomenon. It consists of (1) a browser-based user-interface that allows for
the specification of data mashups as data flow graphs using a set of operators, (2) a

2 http://www.iwaysoftware.com/products/eii.html
3 http://www.ipedo.com/html/ipedo_xip.html

 4

server with an execution engine, as well as (3) APIs for searching, debugging,
executing and managing mashups.

Web mashups perform integration both at the application level and at the
presentation level. Unfortunately, due to very little support both in terms of model and
tools, the presentation part of mashups is developed manually today. An interesting
approach to component integration at the presentation level is proposed in [20].

However, the mentioned approaches did nothing to address the semantic
integration issues – sources can still share XML files whose tags are completely
meaningless outside the application. In consequence, almost all EII products in the
market are limited in, or totally lack, the capabilities of semantic interoperability and
dynamic adaptation upon changes.

3 XML Technology – a Database Approach

XML documents can be either data-centric or document-centric. Data-centric XML is
that which has record structure as its focus. Data-centric XML serves a similar
function to a database; a set of fields are pre-defined, and records (think records here,
not documents) must conform to that structure. Document-centric XML is that which
has the document (the text, something pre-existing with its own structure) as its focus.
A collection of XML documents can be conceived as an XML database.

Any access to XML data must be done through an XML data model. Traditional
databases are based on the notions of a database model and a database schema.
Elements, attributes, mixed content, and other features of XML do not give good
assumptions for development of a unique model of XML data. For that reason
different XML applications use different models of XML data, usually tree- or graph-
oriented, or, more recently, combined with full text features. Perhaps the most
important XML data model is that one used by languages XQuery, XSLT 2.0, and
XPath 2.0. This model is richer than usual tree-like representation. In XPath 2.0, e.g.,
sequences replace node sets from XPath 1.0.

Solutions of many problems with manipulating XML data rely on a query
language. We categorize XML queries into two classes: databases queries and
Information Retrieval (IR) queries. Database queries return all query results that
precisely match the queries, which reminds SQL querying in relational databases. IR
queries allow “imprecise” or “approximate” query results, which are ranked based on
their relevance to the queries. Only the top-ranked results are returned to users.
Another proposal of W3C, rather delayed, is to effectively and efficiently update
XML data (XQuery Update Facility).

One solution how to store XML data is to use conventional databases. It means to
map (shred) the XML documents into data structures of the existing DBMSs (XML-

enabled database). Detaching generic mappings of XML data into universal tables
has the following properties:

• predefined schema is necessary, • joins of tables are necessary for query evaluations and row ordering is done
in an explicit way,

 5

• navigations in XML data are transformed into SQL and full-text operations
are also needed, • scalability problems.

Another possibility is to store XML data into tables generated algorithmically
from an XML schema.

A more advanced solution is to develop a DBMS with a native XML storage
(native XML database or NXD), whose advantages include a support of:

• natural nested hierarchies, • element ordering, • documents as single objects, • schema is not necessary, • XPath and XQuery have a direct implementation, • better scalability.

A hybrid database is a relational database that is XML-enabled, but also offers
native XML capabilities as defined above. It is a database that supports both the
relational data model and the XML data model in all its processing and storage
mechanisms.

The XML technology relevant to XML databases concerns mainly XML schema
and query languages. In the next two subsections we will discuss possibilities that
both kinds of languages offer. Their choice in EII design can significantly influence
the success of EII in practice.

3.1 Database Schemas and XML

By a schema we describe types of XML documents. In principle, two main
possibilities are at disposal: DTD and XML Schema language. Current projects prefer
schemas expressed in XML Schema.

XML Schema provides the ability to define an element's type (string, integer,
etc.) and much finer constraints (a positive integer, a string starting with an uppercase
letter, etc.). There is certain relationship between schemas expressed in these
languages and database schemas. As in other DBMSs, an essential part of each
schema definition languages is made by integrity constraints. Comparing to SQL in
relational databases, possibilities of them in XML Schema are rather poor.

The specific problem is to design XML schemas. There are three ways to design
XML schemas. The first, and the most difficult, is to attempt to create the schema
directly element by element. This requires knowing in advance what specific elements
already go where. The easier solution is to create an instance of the XML document,
then use schema extraction tools to generate a schema that is valid for that instance.
The last and most database-oriented possibility uses conceptual modelling XML data.
Today, structure of XML data is designed usually directly, without the conceptual
schema. This makes more difficult, e.g., modelling hierarchies like it is used in ER
modelling. With XML conceptual modelling also automatic transformations to XML
Schema are easier and more accurate. The research in this area is represented, e.g., by

 6

http://www.stylusstudio.com/xml_generator.html
http://www.stylusstudio.com/autogen_xsd.html

[13]. Dynamicity of EII conditions requires yet an existence of tools for schema
evolution and schema versioning.

Unfortunately, today’s observation of EIS shows that requirements gathering,
schema design and upgrade costs are far more than application development costs. A
special feature of XML databases is that many XML documents exist whose schema
was not known at design time. Thus, many vocabularies are developed without any
schema. As a consequence there are XML databases without any schema. This fact
belongs among the key reasons for existence of NXDs. Rather loose possibilities of
XML schema development are much more flexible than relational or object-oriented
structural definition. A sufficient compromise between completely schemaless and
strict schema-oriented approach is to add cheaply and manageably a small amount of
structure which provides a more compelling solution.

Often there is a need to extract the schema information from XML documents. The
extracted schema should, on one side, tightly represent the data, and be concise and
compact, on the other side. As the two requirements essentially contradict each other,
finding an optimal trade-off is a difficult and challenging task. For promising results
in this area see, e.g., [11].

3.2 XML Query Languages

XML query languages serve to querying, extraction, restructuring, integration,
browsing XML data. They include the following demands:

• pattern matching, • navigation along the structure of XML tags via (regular) path expressions, • powerful approach to structured data similar to SQL, • querying both data and metadata, • generating structured answers to queries (new XML data, derived values)

There are a lot of standards in area of XML query languages designed by W3C,
namely XPath 1.0 and 2.0, XQuery 1.0, XSLT 1.0 and XSLT 2.0. XPath 2.0 is a strict
(rather large one) subset of XQuery 1.0. The main use of the XPath language is in
other XML query languages, namely XQuery and XSLT. XSLT is a language of
transformations. It provides instructions that help to transform XML data into a
rendered format. The focus and strength of XQuery seems to be the data-centric
queries (regularly structured markup), while XSLT has its advantages in document-
centric queries (semi-structured markup).

Integration of relational and XML data resulted in development of SQL/XML
language. SQL/XML allows relational data to be published in an XML form (XPath
data model instance) that can then be queried using XQuery. It provides to define
table columns of the XML type.

As the web-style searching becomes a ubiquitous tool, the need for integrating
exact querying (see languages like XQuery, XSLT, SQL/XML) and IR techniques
becomes more important. For example, in EIS environment we meet cases in which
users provide keyword queries and require a ranking of partial results. In the case of
XML, relevance scoring becomes more complex because the data required for scoring

 7

have a tree structure. An attempt to integrate IR functionality with XQuery is
described in W3C proposal [19]. For an excellent survey of XML retrieval see [14].

3.3 Architectures of XML databases: solutions

A significant role in storing XML documents is whether the documents are data-
centric XML documents or document-centric XML documents.

As we have mentioned earlier, one possibility how to store XML data is an
XML-enabled database. Experiments show that such database is most feasible if only
simple XPath operations are used or if the applications are designed to work directly
against the underlying relational schema. For similar reasons XSLT implementation
can be based on use of a relational database, which serves as a temporal storage for
source and target XML documents (e.g., [9]).

An implementation of NXD is undoubtedly a challenge in the last years both for
developers and researches of database systems. In database architectures, NXDs
provide a nice example when a DBMS needs a separate engine (see [15] for more
deep discussion). There are three main approaches to NXD implementation today:

• NXD DBMS as a separate engine (Tamino, XHive/DB, XIndice, eXist, etc.), • adding native XML storage to RDBMS (e.g., XML Data Synthesis by
Oracle), • hybrid solution (e.g., IBM DB2 9, ORACLE 11g, SQL Server 2008).

An advantage of the last two approaches is the possibility to mix XML with
relational data. While critical data is still in a relational format, the data that not fit the
relational data model is stored natively in XML.

With the new option of storing and querying XML in a RDBMS, schema
designers face to the decision of what portion of their data to persist as XML and
what portion as relational data. ReXSA described in [12] is a schema advisor tool that
is being prototyped for IBM DB2 9, enabling to propose candidate database schemas
given a conceptual model of the enterprise data.

Bourret in [4] registers more than 180 XML database products, among them 40
NXD, and more than 40 XML data binding products.

4 EII through XML technology

A motivation for maintaining XML data in databases has roots in application
demands, in particular to ensure a better work with content in enterprises. With an
XML database one can, e.g., process external data (Web pages, other text databases,
structured data), resolve tasks of e-commerce (lists of products, personalized views of
these lists, orders, invoices in e-commerce, e-brokering), and support integration of
heterogeneous information sources. A typical example of the latter is an integrated
processing data from Web pages and from tables of a relational database. There are
XML database vendors who market their platforms as EII solutions (e.g., Software

 8

AG, IBM, Ipedo). In other words, o store XML data in a database means to manage
large numbers of XML documents in a more effective way.

Since storing and querying XML data as well as data integration are crucial for
EII we focus on these kinds of NXDs uses in detail. We also mention Web services in
context of EII and, finally, some EII trends.

4.1 Content Management Systems

It is well-known that reuse represents an important way for companies to extend the
value of their investment in content. According to the study by ZapThink [22],
producers of content spend over 60% of their time locating, formatting, and
structuring content and just 40% for creating the content.

Stand-alone relational DBMSs are not well prepared for management such
content due its unstructured nature. XML offers a robust technology that becane a
background of content management systems (CMS). Such systems provide users tools
for automatic conversion and distribution of native content via the Web. As XML
separates formatting data from XML content, a new trend is to build CMS on the top
of NXD. As a consequence the distinction between structured and unstructured
information may now be blurring.

By SYS-CON Media Inc. [17], the following XML features are essential in the
context of CMSs:

• Content contribution and conversion. Storing content in XML enables its
various transformations into a variety of formats, such as HTML, for reuse
by multiple applications. • Content access and exchange. XML content can be easily merged with other
sources and represented in an unified way in content management repository. • Content formatting and presentation. A separation of content and
presentation allows different formatting to be applied to the same content in
different situation using XML stylesheets. • Content storage. XML content stored in an XML database can be more
easily searched by XQuery or XPath. • Content personalization. Based on user profiles and type of device, CMS can
deal with the content accommodated by an associate XSL stylesheet. Such
tailored content is then delivered to the user. • Content management Web services. Most of CMSs use Web services to
share and deliver data and specific content management features in the
Internet.

4.2 Data integration

XML databases have separated into three categories. The first one has focused on
managing XML content or documents (e.g., MarkLogic). For example, MarkLogic
Server provides a platform for CMS combining traditional DBMS based on XML
with full-text searching. The other two categories are related to EISs. In the second

 9

category, XML database can provide a middle tier operational data store (ODS)
platform. In the third category, XML database focuses on managing persistent data on
a middle tier for data integration applications, in particular EII applications (e.g.,
Ipedo).

Operational data store. A middle tier ODS can provide the necessary
infrastructure for managing enterprise data and bringing it closer to the consuming
business application, while simultaneously reducing the burden on backend systems
of record. XML databases are an ideal technology to serve as an ODS because of their
ability to maintain schemas and to bind heterogeneous data sources.

Enterprise information integration. Most current EII approaches are still based
on similar principles of loosely-coupled federated systems. Moreover, a key issue, i.e.
resolving differences in schemas and integrating them into one central schema, is
often not requited in today’s EII applications. XML databases enable EII by providing
a platform for querying across heterogeneous data sources, resulting in view of all
common entities spread across enterprise systems or services. For business users,
typically, CMSs can become a source of integration in EII. In such systems data is
managed as schema-less, eliminating the need for schema management and database
administration.

4.3 EII and Web services integration

Web services create huge amounts of new data, specifically the exchange of data-rich
XML messages. Many organizations want and need to store, access, query, audit,
analyze, and repurpose information in these messages. It is nearly impossible to
persist all of these messages in a relational database because of the inflexible data
model they impose.

Here it is possible to use NXD as a „glue“ to connect existing enterprise systems.
For example, in SOAP XML-based object serialization format can be used to perform
asynchronous messaging and RPC between non-XML applications. Although
messages are probably data-centric, their natural format is XML. It makes sense to
build a message queue on a NXD, particularly in cases when EII is event-driven rather
than query-driven. Then data changes, for example, could be accumulated in a
message queue and an EII query scheduled to run at periodic intervals to read the data
from the queue and update a data store with the changes. We obtain XML-specific
capabilities and, consequently, better scalability as the volume and complexity of e-
business transactions increases. XML databases are particularly useful for handling
new message types or evolving message structures. Storing message content in a
native XML database reduces the development time and cost at least 50 percent by
eliminating the need to define object-to-relational mapping [16].

4.4 EII trends

The ability to efficiently store and access XML and relational data types in one
system represents a key point of differentiation among enterprise database vendors. It
also allows enterprise developers to build data-driven applications using XML data

 10

types. Open source RDBMS from companies such as PostgreSQL currently also
supports this hybrid XML-relational data-storage capability.

The popularity of XSLT accelerated the EAI development, and some use of
XSLT is probably a requirement in all EII solutions today. Any exchange of XML
information is namely going to involve a combination of mapping of information
objects, and in most cases these will involve structural transformations to account for
different contexts, i.e., uses of the information.

Approaches to EII based on Semantic Web technologies like, e.g., RDF and
OWL-DL ([2], [21]) are in development today. Authors of [2] use OWL-DL to
integrate enterprise applications. Document content models are rendered into OWL-
DL ontologies. This enables to designers to readily use automated reasoning methods
of reasoners like e.g. RacerPro4. It means that a model-driven enterprise is achievable
today.

5 Conclusions

EII is a broad area that in other terms and under other conditions restates problems
studied in databases during the whole time of their existence. In [23] the authors
address four challenges of EII including scalability, horizontal vs. vertical integration,
central integration, and semantics. For example, with an increasing number of
sources, the scale-up efficiency decreases. Integration is mostly horizontal than
vertical in the most EII systems and the only vertical part is their centralized
administration. We have seen that EII products fall into two categories, those that
grew from an RDBMS background and those that emerged from the XML world.
Particularly, users of hybrid RDBMS can profit from easier integration of structured
and semistructured data. Really significant challenge is information sharing, which
requires considering more semantics in EII. As we mentioned in the paper, techniques
of the Semantic Web can contribute to this problem. According to prediction by
META Group from 2005, ETL, EAI, and EII converge in the general Data Exchange
Facility in the service-oriented architecture.

Acknowledgement This research has been partially supported by the grants of GACR
No. GA201/09/0990 and P202/10/0761

References

1. Altinel, M., Brown, P., Cline, S., Kartha, R., Louie, E., Markl, V., Mau, L., Ng, Y.-H.,
Simmen, D., Singh, A.: Damia – A Data Mashup Fabric for Intranet Applications. In: Prof.
of VLDB ’07, Vienna, Austria, pp. 1370--1373 (2007)

2. Anicic, N., Ivezic, N., Jones, A.: An Architecture for Semantic Enterprise Application
Integration Standards. In: Interoperability of Enterprise Software and Applications,
Springer- London, p. 25--34 (2006)

4 http://www.franz.com/agraph/racer/

 11

 12

3. BEA Systems: Liquid Data for WebLogic: Integrating Enterprise Data and Services. In:
Proc. of SIGMOD 2004, Paris, France, pp. 917--918 (2004)

4. Bourret, R.: XML Database Products.
http://www.rpbourret.com/xml/XMLDatabaseProds.htm (2009)

5. Fremantle, P., Weerawarana,S., and Khalaf, R.: Enterprise Services. Communications of
the ACM October 2002/Vol. 45, No. 10, pp. 77--82, 2002.

6. Gilbane, F.: What is Enterprise Information Integration (EII)? The Gilbane Report:
Volume 12, Number 6, Bluebill Advisors, Inc. © 1993 - 2005 The Gilbane Report (2004).

7. Hauch, R., Miller, A., Cardwell, R.: Information Intelligence: Metadata for Information
Discovery, Access, and Integration. In: Proc. of SIGMOD Conf., Baltimore, Maryland,
USA, pp. 793--798 (2005)

8. ISO/IEC 9075-14: Information technology -- Database languages -- SQL -- Part 14: XML-
Related Specifications (SQL/XML) (2008)

9. Kmoch, O., Pokorny, J.: XSLT Implementation in a Relational Environment. In: Proc. of
the IADIS Multi Conference on Computer Science and Information Systems -
subconference Informatics 2008, Amsterdam, The Netherlands, pp. 91 -- 98 (2008)

10. Mattos, N.M.: Integrating Information for On Demand Computing. In: Proc. of VLDB’03,
Berlin, Germany, pp. 8--14, 2003

11. Mlýnková, I., Nečaský, M: Towards Inference of More Realistic XSDs. In: Proc. of the
24th Annual ACM Symposium on Applied Computing - track Web Technologies,
Honolulu, Hawaii, USA, ACM Press, pp. 632 -- 638 (2009)

12. Moro, M.M., Lim, L., Chang, Y-C.: Schema advisor for hybrid relational-XML DBMS.
In: Proc. of the 2007 ACM SIGMOD Int. Conf. on Management of Data, Beijing, China,
pp. 959-970, (2007)

13. Nečaský, M.: XSEM - A Conceptual Model for XML. In Proc. Fourth Asia-Pacific
Conference on Conceptual Modelling (), Ballarat, Australia. CRPIT, 67. Roddick, J. F.
and Annika, H., Eds., Australian Computer Society, pp. 37--48 (2007)

14. Pal, S., Mitra, M.: XML Retrieval: A Survey, Technical Report, CVPR, 2007,
TR/ISI/CVPR/IR07-01, (2007)

15. Pokorný, J.: Database Architectures: Current Trends and Their Relationships to
Requirements of Practice. In: INFORMATION SYSTEMS DEVELOPMENT Series,
Advances in Information Systems Development: New Methods and Practice for the
Networked Society, Springer Verlag, pp. 269--279 (2007)

16. Smik, R., Parikh A., Ramachandran, A.Use XML databases to empower Java Web
services - Integrate a native XML operational data store into your enterprise application
JavaWorld.com, pp- 1--7 (2004)

17. SYS-CON Media Inc.: The Role in XML in Content Management. XML Journal, (2008)
18. Tailor, J.T.: Enterprise Information Integration: A New Definition. Integration

Consortium, DM Review Online, September 2 (2004)
19. W3C: XQuery and XPath Full Text 1.0 Requirements. W3C Working Draft, (2008)
20. Yu, J., Benatallah, B., Saint-Paul, R., Casati, F., Daniel, F., Matera, M. : A Framework for

Rapid Integration of Presentation Components. In: WWW 2007, Banff, Alberta, Canada,
pp. 923--982 (2007)

21. Yuan, J., Bahrami, A., Wang, Ch., Murray, M., Hunt, A.: A Semantic Information
Integration Tool Suite. In: Proc. of VLDB‘06, Seoul, Korea, pp. 1171--1174 (2006)

22. ZapThink: Market for XML-enabled Content Lifecycle Solutions to Exceed $11.6 Billion
by 2008; XML Key to Solving Critical Content Management Problem: Content Reuse.
Business Wire (2003)

23. Zhou, J. Wang, M., Zhao, H.: Enterprise Information Integration: State of the Art and
Technical Challenges. Proc. of PROLAMAT, IFIP TC5 International Conference, pp. 847-
-852 (2006)

http://www.rpbourret.com/xml/XMLDatabaseProds.htm
http://apccm.massey.ac.nz/apccm07/
http://www.isical.ac.in/%7Esukomal_r/survey.pdf

