Learning from Pathology Databases to Improve the Laboratory Diagnosis of Infectious Diseases

Abstract : This paper investigates the effect of data pre-processing and the use of ensemble on the accuracy of decision trees. The methodology is illustrated using a previously unanalysed data set from ACT Pathology (Canberra, Australia) relating to Hepatitis B and Hepatitis C patients.
Type de document :
Communication dans un congrès
Hiroshi Takeda. First IMIA/IFIP Joint Symposium on E-Health (E-HEALTH) / Held as Part of World Computer Congress (WCC), Sep 2010, Brisbane, Australia. Springer, IFIP Advances in Information and Communication Technology, AICT-335, pp.226-227, 2010, E-Health. 〈10.1007/978-3-642-15515-4_25〉
Liste complète des métadonnées

https://hal.inria.fr/hal-01054856
Contributeur : Hal Ifip <>
Soumis le : vendredi 8 août 2014 - 18:23:18
Dernière modification le : vendredi 11 août 2017 - 11:32:31
Document(s) archivé(s) le : mercredi 26 novembre 2014 - 16:37:43

Fichier

p-3WCC_paper_FS.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Alice Richardson, Fariba Shadabi, Brett A. Lidbury. Learning from Pathology Databases to Improve the Laboratory Diagnosis of Infectious Diseases. Hiroshi Takeda. First IMIA/IFIP Joint Symposium on E-Health (E-HEALTH) / Held as Part of World Computer Congress (WCC), Sep 2010, Brisbane, Australia. Springer, IFIP Advances in Information and Communication Technology, AICT-335, pp.226-227, 2010, E-Health. 〈10.1007/978-3-642-15515-4_25〉. 〈hal-01054856〉

Partager

Métriques

Consultations de la notice

135

Téléchargements de fichiers

56