N
N

N

HAL

open science

Distribution and Dependence of Extremes in Network

Sampling Processes
Konstantin Avrachenkov, Natalia M. Markovich, Jithin K. Sreedharan

» To cite this version:

Konstantin Avrachenkov, Natalia M. Markovich, Jithin K. Sreedharan. Distribution and Dependence

of Extremes in Network Sampling Processes. [Research Report] RR-8578, Inria. 2014, pp.25. hal-

01054929v3

HAL Id: hal-01054929
https://inria.hal.science/hal-01054929v3
Submitted on 24 Feb 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://inria.hal.science/hal-01054929v3
https://hal.archives-ouvertes.fr

Distribution and
Dependence of Extremes

in Network Sampling
Processes

Konstantin Avrachenkov, Natalia M. Markovich,
Jithin K. Sreedharan

RESEARCH
REPORT

N° 8578

February 2015

ISSN 0249-6399 ISRN INRIA/RR--8578--FR+ENG

Project-Team Maestro







V4

: informatics , mathematics

Distribution and Dependence of Extremes in
Network Sampling Processes

Konstantin Avrachenkov*, Natalia M. Markovich,
Jithin K. Sreedharan?$

Project-Team Maestro

Research Report n° 8578 — February 2015 — 22 pages

Abstract: We explore the dependence structure in the sampled sequence of large networks.
We consider randomized algorithms to sample the nodes and study extremal properties in any
associated stationary sequence of characteristics of interest like node degrees, number of followers
or income of the nodes in Online Social Networks etc, which satisfy two mixing conditions. Several
useful extremes of the sampled sequence like kth largest value, clusters of exceedances over a
threshold, first hitting time of a large value etc are investigated. We abstract the dependence
and the statistics of extremes into a single parameter that appears in Extreme Value Theory,
called extremal index (EI). In this work, we derive this parameter analytically and also estimate
it empirically. We propose the use of EI as a parameter to compare different sampling procedures.
As a specific example, degree correlations between neighboring nodes are studied in detail with
three prominent random walks as sampling techniques.
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Distribution et Dépendance des Valeurs Extrémes dans
I’Echantillonnage des Réseaux Complexes

Résumé : Nous étudions la structure de dépendance dans les séquences échantillonnés dans
les réseaux complexes. Nous considérons des algorithmes randomisés pour échantillonner les
neeuds et étudions les propriétés extrémales dans n’importe quelle suite des caractéristiques
comme degrés de nocuds, nombres d’adeptes ou des revenus des noeuds des réseaux sociaux.
Nous faisons 'abstraction de la dépendance des extrémes par un seul paramétre qui apparait
dans la théorie des valeurs extrémes. Ce paramétre s’appelle I'Indice Extrémal (IE). Dans ce
travail, nous étudions ce paramétre analytiquement en utilisant copulas, et empiriquement par
estimation. Nous proposons d’utiliser IE comme un paramétre pour comparer des différentes
procédures d’échantillonnage. Comme un exemple, les corrélations de degré entre les nceuds
voisins sont étudiées en détail en utilisant les trois techniques d’échantillonnage basé sur des
marches aléatoires.

Mots-clés : Echantillonnage de réseau, théorie de valeur extréme, indice extrémal, marche
aléatoire sur un graphe.
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1 Introduction

Data from real complex networks shows that correlations exist in various forms, for instance
the existence of social relationships and interests in social networks. Degree correlations between
neighbors, correlations in income, followers of users and number of likes of specific pages in social
networks are some examples, to name a few. These kind of correlations have several implications
in network structure, for example, degree-degree correlations manifests itself in assortativity or
disassortativity of the network [5].

We consider very large complex networks where it is impractical to have a complete picture a
priori. Crawling or sampling techniques are in practice to explore such networks by making use
of API calls or HTML scrapping. We look into randomized sampling techniques which generate
stationary samples. As an example, random walk based algorithms are in use in many cases
because of several advantages offered by them [4, 8].

We focus on the extremal properties in the correlated and stationary sequence of characteris-
tics of interest X7, ..., X, which is a function of the node sequence, the one actually generated by
sampling algorithms. The characteristics of interest, for instance, can be node degrees, node in-
come, number of followers of the node in OSN etc. Among the properties, clusters of exceedances
of such sequences over high thresholds are studied in particular. The cluster of exceedances is
determined as the consecutive exceedances of {X,,} over the threshold {u,,} between two consec-
utive non-exceedances [11, 18]. It is important to investigate stochastic nature of extremes since
it allows us to disseminate advertisement or collect opinions more effectively within the clusters.

The dependence structure of sampled sequence exceeding sufficiently high thresholds is mea-
sured using a parameter called extremal index (EI), 6 in Extremal Value Theory. It is defined
as follows.

Definition 1. [15, p. 53] The stationary sequence {X,, },>1, with F as the marginal distribution
function and M,, = max{Xjy,..., X, }, is said to have the extremal index 6 € [0, 1] if for each
0 < 7 < oo there is a sequence of real numbers (thresholds) w, = u,(7) such that

1i_>m n(l — F(u,)) = 7 and (1)
i < = e 79,
nh_)n;@ P{M, <u,} e

The maxima M, is related to EI more clearly as [6, p. 381]®
P{My <} = F™(un)+of1). 2)

When {X,},>1 is i.i.d. (for instance uniform independent node sampling), § = 1 and point
processes of exceedances over threshold u,, converges weakly to homogeneous Poisson process |6,
Chapter 5]. But when 0 < 6 < 1, point processes of exceedances converges weakly to compound
Poisson process and this implies that exceedances of high threshold values u,, tend to occur in
clusters for dependent data [6, Chapter 10].

EI has many useful interpretations and applications like

e Finding distribution of order statistics of the sampled sequence. These can be used to
find quantiles and predicts the kth largest value which arise with a certain probability.
Specifically for the distribution of maxima, (2) is available and the quantile of maxima is
proportional to EI. Hence in case of samples with lower EI, lower values of maxima can be
expected. When sampled sequence is the sequence of node degrees, these give many useful
results.

RR n°® 8578



4 K. Avrachenkov, Natalia M. Markovich € Jithin K. Sreedharan

e Close relation of extremal index to the distribution and expectation of the size of clusters
of exceedances.

e First hitting time of the sampled sequence to (u,,o0) is related to EI. Thus in case of
applications where the aim is to detect large values of samples quickly, without actually
employing sampling (which might be very costly), we can compare different sampling pro-
cedures by EI: smaller EI leads to longer searching of the first hitting time.

These interpretations are explained later in the paper. The network topology determines the sta-
tionary distribution of the characteristics of interest under a sampling technique and is reflected
on the EI. This indicates that different sampling algorithms may have different EI.

Our contributions

The main contributions in this work are as follows. We associated Extremal Value Theory of
stationary sequences to sampling of large complex networks and we study the extremal and
clustering properties of the sampling process due to correlations. In order to facilitate a painless
future study of correlations and clusters of samples in large networks, we propose to abstract the
extremal properties into a single and handy parameter, EI. For any general stationary samples
meeting two mixing conditions, we find that knowledge of bivariate distribution or bivariate
copula is sufficient to compute EI analytically and thereby deriving many extremal properties.
Several useful applications of EI (first hitting time, order statistics and mean cluster size) to
analyse large graphs, known only through sampled sequences, are proposed. Degree correlations
are explained in detail with a random graph model for which joint degree correlations exist for
neighbor nodes. Three different random walk based algorithms that are widely discussed in
literature (see [4] and the references therein), are then revised for degree state space and EI is
calculated when the joint degree correlation is bivariate Pareto distributed. We establish a general
lower bound for EI in PageRank processes irrespective of the degree correlation model. Finally
two estimation techniques of EI are provided and EI is numerically computed for a synthetic
graph with neighbour degrees correlated and for two real networks (Enron email network and
DBLP network).

The paper is organized as follows. In Section 2, methods to derive EI are presented. Section
3 considers the case of degree correlations. In Section 3.1 the graph model and correlated graph
generation technique are presented. Section 3.2 explains the different types of random walks
studied and derives associated transition kernels and joint degree distributions. EI is calculated
for different sampling techniques later in Section 3.3. In Section 4 we provide several applications
of extremal index in graph sampling techniques. In Section 5 we estimate extremal index and
perform numerical comparisons. Finally Section 6 concludes the paper.

A shorter version of this submission has been appeared in [3].

2 Calculation of Extremal Index (EI)

We consider networks represented by an undirected graph G with N vertices and M edges.
Since the networks under consideration are huge, we assume it is impossible to describe them
completely, i.e., no adjacency matrix beforehand. Assume any randomized sampling procedure
is employed and let the sampled sequence {X;} be any general sequence.

This section explains a way to calculate extremal index from the bivariate distribution if the
sampled sequence admits two mixing conditions.

Inria
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Condition (D(uy,)).

P(le Sun,...,Xip S ’U,n,le Sun,...,X]‘

- P(le < Upy - 7Xip < un)P(Xh < Upy - anq < Un) < Qnl,s
where a,,;, — 0 for some sequence [, = o(n) as n — oo, for any integers i; < ... <14, < ji <
Co < g with Gy —ip > L.

Condition (D" (uy)).

n—r oo

lim {ZP(Xj <up < Xjp1] X1 > un)} —0,
j:

where (n/ry,)an, — 0 and l,,/r, — 0 with a,, ,,, I, as in Condition D(u,,) and r, as o(n).

Let C(u,v) is the bivariate Copula [19] ([0,1]*> — [0,1]) and C” is its Gateaux derivative
along the direction (1, 1). Using Sklar’s theorem [19, p. 18], with F' as the marginal stationary
distribution function of the sampling process,

C(u,u) = P(X; < F1(u), Xo < F~H(u)).

F~! denotes the inverse function of F. This representation is unique if the stationary distribution
F(z) is continuous.

Proposition 1. If the sampled sequence is stationary and satisfies conditions D(u,) and D" (uy,),
then extremal index is given by
9:0/(151)715 (3)

and 0 <60 <1.

Proof. From [14], for the stationary sequence {X,} with Conditions D(u, and D" (u,), 6 =
lim;, 00 P(X2 < up| X7 > up). Then

P(Xs < up, X1 > up)

0 = 1

nooe P(X; > )
i P(Xy < up) — P(Xy < up, Xo <)

= lim
n—o0 P(X1 > up)

= 1 P(X: < un)

— m & C(z,x)
x—1 11—z

= C'(1,1) - 1.

The existence of EI in [0, 1] is evident from the definition used in this proof. |

Remark 1. The condition D”(u,) can be made weaker to D*)(u,,) presented in [9],

lim nP (X1 > u, > max X;, max X, > un) =0,

n—00 2<i<k k+1<j<r,

RR n°® 8578



6 K. Avrachenkov, Natalia M. Markovich € Jithin K. Sreedharan

where 7, is defined as in D" (u,,). For the stationary sequence D® (u,,) = D" (u,). If we assume
D) is satisfied for some k > 2 along with D(u,,), then following the proof of Proposition 1, EI
can be derived as

0 = Cr(1) = G (1),

where Ci(z) represents the copula of k-dimensional vector (z1,...,x), Cr(x1,...,xr) with
x = x1... = x and Cy_q is its (k — 1)th marginal, Cy_1(z) = Cr—1(x1,...,25-1,1) with
r=x1...=Tfk—-1-

In some cases it is easy to handle with the joint tail distribution. Survival Copula C (,°)
which corresponds to R
P(X; >z, Xy > 2) = C(F(x), F(x)),
with F(z) = 1 — F(z), can also be used to calculate 6. It is related to Copula as C(u,u) =
C(1—u,1—u)+2u—1[19, p. 32]. Hence 6 = C'(1,1) — 1 =1 — C'(0,0).
Lower tail dependence function of survival copula is defined as [22]

~

. C(tug,tu
- iy, St

Hence 6/(0, 0) = A(L,1). X can be calculated for different copula families. In particular, if Cisa
bivariate Archimedean copula, then it can be represented as, C(uy, uz) = (1= (u1) + 1 (uz)),
where 1) is the generator function and ¢! is its inverse with 1 : [0, 00] — [0, 1] meeting several
other conditions. If 1 is a regularly varying distribution with index —f3, 8 > 0, then A(z1,22) =
(x7” - +ax,” 71)_[3 and (X1, X5) has a multivariate regularly varying distribution [22]. Therefore,
for Archimedean copula family, EI is given by

=1-1/2° (4)

As an example, bivariate Pareto distribution of the form P(X; > 1, Xo > x9) = (1421 +22) 77,
~ > 0 has Arhimedean copula with generator function ¢(z) = (1+2)~ 7. This gives § = 1—1/27.
Bivariate exponential distribution of the form

PXyi>a,Xo>a)=1—e " —e ™2 4 e~ (Bitzatnzize)

0 <n <1, also admits Archimedian copula.

2.1 Check of conditions D(u,) and D" (u,)

If the sampling technique is assumed to be based on a Markov chain and consider the sampled se-
quence as measurable functions of stationary Markov samples, then such a sequence is stationary
and [21] proved that another mixing condition AIM (u,) which implies D(u,,) is satisfied.

Condition D" (u,,) allows clusters with consecutive exceedances and eliminates the possibility
of clusters with upcrossing of the threshold u,, (X; < wu, < X;;1). Hence in those cases, where
it is tedious to check the condition D" (u,,) theoretically, we can use numerical procedures to
measure ratio of number of consecutive exceedances to number of exceedances and the ratio of
number of upcrossings to number of consecutive exceedances in small intervals. Such an example
is provided in Section 3.3.

Remark 2. The EI is derived in [10] to the same expression in (3). But [10] assumes {X,}
is sampled from a first order Markov chain. This condition is much stricter than D(u,) and
D" (uy,) which we used to derive (3). For instance, degrees of the node samples obtained from

Inria
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a Markov chain based sampling, mostly not form a Markov chain as node-degree relation is not
one-one while D(u,) is agreed for such a case and D" (u,,) can get satisfied, see Section 3.3 for
an example.

3 Degree correlations

The techniques established in Section 2 are very general, applicable to any sampling techniques
and any sequence of samples which satisfy certain conditions. In this section we illustrate the
calculation of extremal index for correlations among degrees. We introduce different sampling
techniques through this section though they can be used in case of any general correlations. We
denote the sampled sequence {X;} as {D;} in this section.

3.1 Description of the model

We take into account correlation in degrees between neighbor nodes. The dependence struc-
ture in the graph is described by the joint degree-degree probability density function f(dy,d2)
with d; and dy indicating the degrees of adjacent nodes or equivalently by the corresponding
tail distribution function F(dy,ds) = P(Dy > dy, Dy > dy) with Dy and D representing the
corresponding degree random variables (see e.g., [5, 7, 13]).

The probability that a randomly chosen edge has the end vertices with degrees d; < d <
dq —I—A(dl) and do < d < ds +A(d2) is (2 _5d1d2)f(d1; dg)A(dl)A(dg) Here 6d1d2 =1ifd; = do,
zero otherwise. The multiplying factor 2 appear on the above expression when d; # dy because
of the symmetry in f(dy,d2), f(d1,d2) = f(dz2,d1) due to the undirected nature of the underlying
graph, and the fact that both f(di,ds and f(ds,d;) contribute to the edge probability under
consideration.

The degree density fq(dy) can be calculated from the marginal of f(dy,ds) as

_ ~ Wfaldr)
fldi) = dzf(dlacb)d(dz)fv D] (5)

where E[D] denotes the mean node degree,

E[D] = [// (f(d;ildﬂ) d(dl)d(dg)}_l.

f(.) can be interpreted as the degree density of a vertex reached by following a randomly chosen
edge. The approximation for f(d) is obtained as follows: in the R.H.S. of (5), roughly, d; fq(d1)N
is the number of half edges from nodes with degree around d; and E[D]N is the total number of
half edges.

From the above description, it can be noted that the knowledge of f(dy,ds) is sufficient to
describe this random graph model and for its generation.

Most of the results in this paper are derived assuming continuous probability distributions
for f(dy,d2) and f4(d1) because an easy and unique way to calculate extremal index exists for
continuous distributions in our setup (more details in Section 2). Also the extremal index might
not exist for many discrete valued distributions [15].

3.1.1 Random graph generation

A random graph bivariate joint degree-degree correlation distribution can be generated as follows

([20])-

RR n°® 8578
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. . . d)E[D

1. Degree sequence is generated according to the degree distribution, f4(d) = %

2. An uncorrelated random graph is generated with the generated degree sequence using
configuration model ([5])

3. Metropolis dynamics is applied now on the generated graph: choose two edges randomly
(denoted by the vertex pairs (v, w;) and (ve,w2)) and measure the degrees, (j1,k1) and
(Ja, ko) correspond to these vertex pairs. Generated a random number, y, according to
uniform distribution in [0,1]. If y < min(1, (f(j1,j2)f k1, k2))/(f (51, k1) f(J2, k2))), then
remove the selected edges and construct news ones as (v1,v2) and (wq,ws). Otherwise
keep the selected edges intact. This dynamics will generate the required joint degree-degree
distribution. Run Metropolis dynamics well enough to mix the network.

3.2 Description of random walks

In this section, we explain three different random walk based algorithms for exploring the net-
work. They have been extensively studied in previous works [4, 8, 17] where they are formulated
with vertex set as the state space of the underlying Markov chain on graph. The walker in these
algorithms, after reaching each node, moves to another node randomly by following the transition
kernel of the Markov chain. But since the interest in the present work is in the degree sequence,
rather than node sequence, and its extremal properties, we take degree set as the state space
and find appropriate transition kernels. We use fz and P g to represent the probability density
function and probability measure under the algorithm 2~ with the exception that fy represents
the probability density function of degrees.

3.2.1 Random Walk (RW)

In a random walk, the next node to visit is chosen uniformly among the neighbors of the current

node. From (5) we approximate the standard random walk on degree state space by the following

transition kernel, conditional density function that the present node has degree d; and the next

node is with degree d¢41,

E[D]f(d¢, de+1) (6)
dy fa(dt)

This approximation is obtained as follows: given the present node has degree d;, 1/d; is the
probability of selecting a neighbor uniformly and rest of the terms in R.H.S. represent the mean

number of neighbors with degree around d;11. When d; # dy41, E[%@f(dt, di+1)) is the mean
number of edges between degrees about d; and di11 and f4(d;)N is the mean number of nodes
with degrees about d;, and thus their ratio represents such a mean number of edges per node
with degree about d;, i.e., mean number of neighbors with degree about d;41. The probability
of occurring the other case, d; = d;+1, is zero as the degrees are assumed to follow a continuous
distribution.

If the standard random walk on the vertex set is in the stationary regime, its stationary distri-
bution (probability of staying at a particular vertex i) is proportional to the degree (see e.g., [17])
and is given by d;/2M. Then in the standard random walk on degree set, the stationary distri-
bution of staying at any node with degree around d; can be approximated as N fq(dy) (d1/2M]).
Thus

frw (deya]de) =

d
mfd(Ch%

Then, the joint density of the standard random walk is frw (dit1,d:) = f(di, diy1).

frw(di) =

Inria
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Check of the approximation

We provide comparison of simulated values and theoretical values of transition kernel of RW in
Figure 1. The bivariate Pareto model is assumed for the joint degree-degree tail function of the
graph,
- dy — do —p\ 7
Py da) = (14 B4 B0 ™
o o
where o, p and ~ are positive values. In the figure, N number of nodes is 5,000. =10, v = 1.2
and o = 15. These choices of parameters provides F[D] = 21.0052. At each instant Metropolis
dynamics will choose two edges and it has run 200,000 times (provides sufficient mixing). The
figure shows satisfactory fitting of the approximation.

— ; ; - ~|—Estimated
— Theoretical Approximation

10"
. \
Q 10?
= = ﬁ ;
N ~ R —
Qi 10°
£
Tl 4

10°

10° 10" 10° 10° 10"
Degree, d

Figure 1: Transition kernel comparison

3.2.2 PageRank (PR)

PageRank is a modification of the random walk which with a fixed probability 1 — ¢ samples
a random node with uniform distribution and with a probability ¢, it follows the random walk
transition [8]. Its evolution on degree state space can be described as follows:

fPr(diy1ldy) = ¢ frw (dis1ldy) + (1 — C)%Nfd(dt-i-l)
~ ¢ frw (dit1]de) + (1 — ) fa(des1) (8)

Here the 1/N corresponds to the uniform sampling on vertex set and %N fa(diy1) indicates the
net probability of jumping to all the nodes with degree around dy.

Check of the approximation

We provide a consistency check of the approximation derived for transition kernel by studying
tail behavior of degree distribution and PageRank distribution. It is known that under some
strict conditions, for a directed graph, PageRank and Indegree have same tail exponents [16].
In our formulation in terms of degrees, for uncorrelated and undirected graph, PageRank for a
given degree d, PR(d), can be approximated from the basic definition as,

PR(d) = frw(d) = ¢ frw(d) + (1 —¢) fa(d).

RR n°® 8578
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This is a deterministic quantity. We are interested in the distribution of the random variable
PR(D), PageRank of a randomly choosen degree class D. PageRank PR(d) is also the long term
proportion or probability that PageRank process ends in a degree class with degree d. This can
be scaled suitably to provide a rank-type information. Its tail distribution is

P(PR(D) > z) =P (c.frw(D) + (1 —¢).fa(D) > z),

where D ~ f4(.). The PageRank of any vertex inside the degree class d is PR(d)/(N fa(d)). The
distribution of Page Rank of a randomly chosen vertex i, P(PR(i) > x) after appropriate scaling
for comparison with degree distribution is P(N.PR(i) > d), where d = Nx. Now

P(N.PR(i)>d) = P (N%((DD)) > ci)
]

P(D>E[CD {CZ—(1—C)D.

This of the form P(D > Ad + B) with A and B as appropriate constants and hence will have
the same exponent of degree distribution tail when the graph is uncorrelated.

There is no convenient expression for the stationary distribution of PageRank, to the best
of our knowledge, and it is difficult to come up with an easy to handle expression for the joint
distribution. Therefore, along with other advantages, we consider another modification of the
standard random walk.

3.2.3 Random Walk with Jumps (RWJ)

RW sampling leads to many practical issues like the possibility to get stuck in a disconnected
component, biased estimators etc. RWJ overcomes such problems ([4]).

In this algorithm we follow random walk on a modified graph which is a superposition of the
given graph and complete graph on same vertex set of the given graph with weight ai/N on each
edge, a € [0,00] being a design parameter ([4]). The algorithm can be shown to be equivalent
to select ¢ = a/(d; + «) in the PageRank algorithm, where d; is the degree of the present node.
The larger the node’s degree, less likely is the artificial jump of the process. This modification
makes the underlying Markov chain time reversible, significantly reduces mixing time, improves
estimation error and leads to a closed form expression for stationary distribution.

The transition kernel on degree set, following PageRank kernel, is

dt «

Trw(depr]de) = dt+afRW(dt+1|dt)+ dt+ozfd(dt+1)

_ E[D]f(d¢,dis1) + afa(ds) fa(disq)
(di + ) fa(ds) .

The stationary distribution for node i (on the vertex set) is (d; + a)/(2M + Na) and the
equivalent stationary probability density function on degree set by collecting all the nodes with
same degree is

2M + Na

~ (di+a)faldr)
M CET o

frwa(di) =~ (ﬂ)]\ffd(dl)

Inria



Distribution and Dependence of FExtremes in Network Sampling Processes 11

since 2M /N = E[D]. The stationarity of the frw s(d1 can be verified by plugging the obtained
expression in the stationarity condition of the Markov Chains. We have

frwa(dy) = /fRWJ(d1|d2)fRWJ(d2)d(d2)

~ / E[D]f(dy,d2) + afq(dr) fa(d2) (da + a)fd(dQ)d(d )
(d2 + o) fa(dy) E[D] + « 2
_ (di + &) fa(dy)

~ E[D]+a

where (5) has been applied. Then, the joint density function for the random walk with jumps
has the following form

E[D|f(dsy1,d) + afa(diy1) fa(dy)
ED] + «

fRWJ(dtJrl; dt) ~

Moreover the associated tail distribution has a simple form,

E[D]F(dH_h d) + Oéfd(dt_ﬂ)Fd(dt)

E[D]+ « ' (10)

fRWJ(Dt+1 > dt—‘,—l;Dt > dt) ~

Remark 3. Characterizing Markov chain based sampling in terms of degree transition has some
advantages,

e In the different random walk algorithms considered on vertex set, all the nodes with same
degree have same stationary distribution. This also implies that it is more natural to
formulate the random walk transition in terms of degree.

e Degree uncorrelations in the underlying graph is directly reflected in the joint distri-
bution of the studied sampling techniques. For uncorrelated networks, frw(di,ds) =

frw(di) frw (d2), frr(di,d2) = frr(di)frr(d2) and frws(di,d2) = frws(d1) frws(d2).

3.3 Extremal Index for bivariate Pareto Degree Correlation

As explained in the Introduction section, extremal index is an important parameter in charac-
terizing dependence and extremal properties in a stationary sequence. We assume that we have
waited sufficiently long that the underlying Markov chain of the three different graph sampling
algorithms are in stationary regime now. Here we derive EI of RW and RWJ for the model with
degree correlation among neighbours as bivariate Pareto (7).

The two mixing conditions D(uy,) and D" (u,) introduced in Section 2 are needed for our EI
analysis. Condition D(u,,) is satisfied as explained in Section 2.1. An empirical evaluation of
D" (uy,) is provided in Section 5.3.1.

3.3.1 EI for Random Walk sampling

We use the expression for EI given in Proposition 1. As frw (z,y) is same as f(z,y), we have,

~

C(u,u) = P(Dy > F Y(u),Dy > F ' (u))
- (1 oY 1)) -
Cllu,u) = 2(2—u'/7)~0+D,

Thus # = 1 — C'(0,0) = 1 —1/27. For v = 1 we get 6 = 1/2. In this case, we can also use
expression given in (4).
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3.3.2 EI for Random Walk with Jumps sampling

Although it is possible to derive EI as in RW case above, we provide an alternative way to avoid
the calculation of tail distribution of degrees and inverse of RWJ marginal (with respect to the
bivariate Pareto degree correlation).

Under the assumption of D",

PD<n7D n PDZn_PDZn;DZn
0 = lim (D2 = u 1>u):hm (D1 = un) (D2 = u L2 Un)

n—00 P(Dy > uy) n—oo P(D1 > uy)

(11)

Now using the condition (1) on the marginal and joint tail distribution of RWJ (10), we can
write(®)

P(D1 > uy) — P(D2 > uy, D1 > uy)
P(D1 > Un)
7/ + o(1/n) — o2 Py (Dy > wn, Dy > un) — 5ram O(1/n)O(7/n)

ED]+a E[D]+a
7/n 4+ o(l/n)

The asymptotics in the last term of the numerator is due to the following:

o —

FRWJ(U‘H) = F(Un) + mFd(un) = T/TL + O(l/n)a

and hence F4(u,) = O(t/n). Therefore (11) becomes

E[D
[ ] lim PRw(DQ Z Un,Dl Z Un)n/T

:1—7

In the case of the bivariate Pareto distribution (7), we obtain

277 (12)

3.4 Lower bound of EI of the PageRank

We obtain the following lower bound for EI in the PageRank processes.

Proposition 2. For the PageRank process on degree state space irrespective of the degree corre-
lation structure in the underlying graph, the extremal index

0> (1-c).
Proof. From [21], the following representation of EI holds for degree sequence,

lim P{M; ,, <u,|Di>u,} =290, (13)

n—oo

where {p,} is an increasing sequence of positive integers, p, = o(n) as n — oo and M ,, =
max{Ds,...,D,, }. Let A be the event that the node corresponding to Dy is selected uniformly
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among all the nodes, not following random walk from the node for D;. Then Ppr(A) =1 —c.
Now, with (8),
PPR(Ml,pn S un|D1 > Un) Z PPR(Ml,pn S un;-A|D1 > un)
(.A|D1 > un)PPR(Ml,pn < un|A, D1 > un)
(1 —c PPR(Ml,pn < Un),
(Dl < up) + 0( )
V(D1 <) +0(1)

1-— c(l—T/n)p" L (14)

= Ppr

where {p,,} is the same sequence as in (13) and (i) follows mainly from the observation that
conditioned on A, {Mi p, < u,} is independent of {Dy > w,}, (i7) and (i#i) result from the
approximations in (2) and (1) respectively.
Assuming p,, — 1 = n'/? and since (1 — 7/n)P»~! ~ e~7/V" - 1 as n — oo, from (13) and
(14),
0>1-—c.

The PageRank transition kernel (8) on the degree state space does not depend upon the
random graph model in Section 3.1. Hence the derived lower bound of EI is useful for any degree
correlation model. O

4 Applications of Extremal Index in Network Sampling Pro-
cesses

This section provides several uses of EI to infer the sampled sequence. This emphasis that the
analytical calculation and estimation of EI are practically relevant.

The limit of the point process of exceedances, Ny, (.), which counts the times, normalized by n,
at which {X;}? ;| exceeds a threshold u,, provides many applications of extremal index. A cluster
is considered to be formed by the exceedances in a block of size r,, (r, = o(n)) in n with cluster
size &, = Y ;"1 1(X; > uy,) when there is at least one exceedance within r,,. The point process
N,, converges weakly to a compound poisson process (C'P) with rate 7 and i.i.d. distribution
as the limiting distribution of cluster size, under condition (1) and a mixing condition, and the
points of exceedances in C'P correspond to the clusters [6, Section 10.3]. We name this kind of
clusters as blocks of exceedances.

The applications below require a choice of the threshold sequence {u,} satisfying (1). For
practical purposes, if a single threshold u is demanded for the sampling budget B, we can fix
u = max{uy,...,up}.

The applications in this section are explained with the assumption that the sampled sequence
is the sequence of node degrees. But the following techniques are very general and can be extended
to any sampled sequence satisfying conditions D(u,) and D" (uy,).

4.1 Order statistics of the sampled degrees

The order statistics X, n, (n — k)th maxima, is related to N,(.) and thus to 6 by
P(Xn—k,n < un) = P(Nn((oa 1]) < k)a

where we apply the result of convergence of N,, to C'P [6, Section 10.3.1].
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4.1.1 Distribution of Maxima

The distribution of the maxima of the sampled degree sequences can be derived as (2) when
n — oo. Hence if the extremal index of the underlying process is known then from (2) one can
approximate the (1 —7)th quantile z,, of the maximal degree M,, as

P{Mn < 1'77} = Fne(l'n) = PnG{Xl < :L'n} =1 n,

ie.
x, ~ F! ((1 - 77)1/("6)) . (15)

In other words, quantiles can be used to find the maxima of the degree sequence with certain
probability.

For a fixed certainty 7, =, is proportional to 6. Hence if the sampling procedures have same
marginal distribution, with calculation of EI, it is possible to predict how much large values can
be achieved. Lower EI indicates lower value for x,, and higher represents high x,,.

For the random walk example in Section 3.3.1 for the degree correlation model, with the use
of (15), we get the (1 — n)th quantile of the maxima M,

zn%u+a<<1(1n)1/(”">) Wl)

The following example demonstrates the effect of neglecting correlations on the prediction
of the largest degree node. The largest degree, with the assumption of Pareto distribution for
the degree distribution, can be approximated as K N/ with K ~ 1, N as the number of nodes
and v as the tail index of complementary distribution function of degrees [2]. For Twitter graph
(recorded in 2012), 6 = 1.124 for outdegree distribution and N = 537,523,432 [12]. This gives
the largest degree prediction as 59,453,030. But the actual largest out degree is 22,717,037.
This difference is because the analysis in [2] assumes i.i.d. samples and does not take into account
the degree correlation. With the knowledge of EI, correlation can considered as in (2). In the
following section, we derive an expression for such a case.

4.1.2 Estimation of largest degree when the marginals are Pareto distributed

It is known that many social networks have the degree asymptotically distributed as Pareto.
We find that in these cases, the marginal distribution of degrees of the random walk based
methods also follow Pareto distribution (though we have derived only for the model with degree
correlations among neighbors, see Section 3)

Claim 1. For any stationary sequence with marginal distribution following Pareto distribution
F(x) = C279, the largest value is

O \1/6

o~ ()
log 2

Proof. From extreme value theory [6], it is known that when {Xj;,7 > 1} are i.i.d.,

lim P <M"7;b” < z> = H,(z), (16)

n— 00 a

where H,(x) is the extreme value distribution with index v and {a, } and {b,} are appropriately
chosen deterministic sequences. When {X;,7 > 1} are stationary with EI 0, the limiting distri-
bution becomes H’,(x) and it differs from H.,(z) only through parameters. H (z) = exp(—t(z))

Inria
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with t(z) = (14 (5£) 7)71/7. With the normalizing constants (1 = 0 and o = 1), H/, has the
same shape as H, with parameters v/ =, 0/ =67 and ¢/ = (87 — 1) /7.

For Pareto case, F(x) = Cx~%, v = 1/8, a, = yC'n? and b, = C7'n”. From (16), for large
n, M, is stochastically equivalent to a,x + b,, where x is a random variable with distribution
H'/y" It is observed in [2] that median of y is an appropriate choice for the estimation of M,,.

Median of x = p’ + o’ (%) = (07(log2)™7 — 1)y~!. Hence,

Y -
an <9(1L2) — 1) +bn
v

o\
_ s (Y
(nf) <10g2>

M,

Q

4.2 Relation to first hitting time and interpretations

Extremal index also gives information about the first time {X,} hits (u,,00). Let T}, be this
time epoch. As N, converges to compound poisson process, it can be observed that T, /n
is asymptotically an exponential random variable with rate 67, i.e., lim, . P(T,,/n > z) =
exp(—67x). Therefore lim, o E(T,/n) = 1/(67). Thus the more EI smaller, the more time
it will take to hit the extreme levels as compared to independent sampling. This property can
make use to compare different sampling procedures.

4.3 Relation to mean cluster size

If the conditions D" (u,,) is satisfied along with D(u,), asymptotically, a run of the consecutive
exceedances following an upcrossing is observed, i.e., {X,,} crosses the threshold u, at a time
epoch and stays above u,, for some more time before crossing u,, downwards and stays below it
for some time until next upcrossing of u,, happens. This is called cluster of exceedances and is
more practically relevant than blocks of exceedances at the starting of this section and is shown
in [14] that these two definitions clusters are asymptotically equivalent resulting in similar cluster
size distribution. The expected value of cluster of exceedances converges to inverse of extremal

index [6, p. 384], i.e.,
1 1 . .
6~ = lim > jma()),

j>1

where {m,(j),7 > 1} is the distribution of size of cluster of exceedances with n samples. More
details about cluster size distribution and its mean can be found in [18].

5 Estimation of Extremal Index and Numerical results

This section introduces two estimators for EI. Two types of networks are presented: synthetic
correlated graph and real networks (Enron email network and DBLP network). For the synthetic
graph, we compare the estimated EI to its theoretical value. For the real network, we calculate
EI using the two estimators.

We take {X;} as the degree sequence and use RW, PR and RWJ as the sampling techniques.
The methods mentioned in the following are general and are not specific to degree sequence or
random walk technique.
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5.1 Empirical Copula based estimator

We have tried different estimators for EI available in literature [6, 10] and found that the idea
of estimating copula and then finding value of its derivative at (1, 1) works without the need to
choose and optimize several parameters found in other estimators. We assume that {X;} satisfies
D(uy,) and D" (u,,) and we use (3) for calculation of EI. Copula C(u,v) is estimated empirically

by
1 — RX RY
Cn ) = - I k- < ) k- < ’
(u, ) n; <n+1_un+1_v>

with ng indicates rank of the element X;, in {X;,,1 <k <n}, and Y;, = X;, +1. The sequence
{Xi, } is chosen from the original sequence {X;} in such a way that X;, and Xj, , are sufficiently
apart to make them independent to certain extent. The large-sample distribution of C,(u,v) is
normal and centered at copula C'(u,v). Now, to get 6, we use linear least squares error fitting to
find slope at (1,1) or use cubic spline interpolation for better results.

5.2 Intervals Estimator

This estimator does not assume any conditions on {X;}, but has the parameter u to choose
appropriately. Let N ="  1(X; > u) be number of exceedances of u at time epochs 1 < S; <
... < Sy < n and let the interexceedance times are T; = S;11 — 5;. Then intervals estimator is
defined as [6, p. 391],

Gofur) = { min(1, 01 (w)), if maxT;:1<i<N—1<2,
"V Umin(1, 02 (), if maxTy:1<i< N —1>2,
where
() = 221 L)
n - N—1 ’
(N - 1) Zi:l Ti2
and

2N (T — 1))
(N = )N T = 1)(Ts - 2)

1=1

07 (u) = :
We choose u as ¢ percentage quantile thresholds, i.e., 0 percentage of {X;,1 < i < n} falls below
u. The EI is usually selected corresponding to the stability interval in the plot (6, d).

5.3 Synthetic graph

The simulations in the section follow the bivariate Pareto model and parameters introduced in
(7). We use the same set of parameters of Figure 1 and the graph is generated according to the
technique in Section 3.1.1.

For the RW case, Figure 2 shows copula estimator, and theoretical copula based on the
continuous distribution in (7) and is given by

C(u,u) = (1 (1l =) = 1)) T hou—1.

Though we take quantized values for degree sequence, it is found that the copula estimated

matches with theoretical copula. The value of EI is then obtained after cubic interpolation and

numerical differentiation at point (1,1). For the theoretical copula, EI is 1 —1/27, where v = 1.2.
Figure 3 displays the comparison between theoretical value of EI and Intervals estimate.
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Figure 2: Synthetic graph (RW sampling): Empirical and theoretical copulas
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Figure 3: Synthetic graph (RW sampling): Intervals estimate and theoretical value 8 = 0.56 vs
the percentage of quantile level, §

For the RWJ algorithm, Figure 4 shows the Intervals estimate and theoretical value for
different . We used the expression (12) for theoretical calculation. The small difference in
theory and simulation results is due to the assumption of continuous degrees in the analysis, but
the practical usage requires quantized version.

Figure 5 displays the Intervals estimate of EI with PR sampling. It can be seen that the
lower bound proposed in Proposition 2 gets tighter as ¢ decreases.

5.3.1 Check of condition D"

The mixing conditions D(u,) and D”(u,) need to be satisfied for using the theory in Section
2. Though Intervals estimator does not require them, these conditions will provide the existence
of EI. Condition D(u,) works in this case as explained in previous sections and for D" (u,,),
we do the following empirical test. We collect samples for each of the techniques RW, PR
and RWJ. Intervals are taken of duration 5,10,15 and 20 time samples. The ratio of number
of upcrossings to number of exceedances ry, and ratio of number consecuitve exceedances to
number of exceedances r¢juster are calculated in Table 1. These proportions are averaged over
2000 occurrences of each of these intervals and over all the different intervals. The statistics
in the table indicates strong occurrence of condition D" (u,). We have also observed that the
changes in the parameters does not affect this inference.
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Figure 4: Synthetic graph (RWJ sampling): Intervals estimate and theoretical value vs the
percentage of quantile level §
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0.85]
0.8
5"0.75
0.7
0.65]

0.6

3
0'10 20 30 40 50 60 70 80 90 100

0

Tup(%) | Tcluster(%)
RwW 4 89
PR 7 91
RWJ 5 86

Table 1: Test of Condition D" in the synthetic graph

5.4 Real network

We consider two real world networks: Enron email network and DBLP network. The data is
collected from [1]. Both the networks satisfy the check for the condition D”(u,,) reasonably well.

For the RW sampling, Figure 6 shows the bivariate copula estimated and mentions corre-
sponding EI. Intervals estimator is presented in Figure 7. After observing plateaus in the plots,
we took EI as 0.25 and 0.2 for DBLP and Enron email graphs, respectively.
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Figure 6: Empirical copulas for email-Enron graph and DBLP graph (RW sampling)
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Figure 7: email-Enron graph and DBLP graph (RW sampling): Intervals estimate vs the per-
centage of quantile level §.

In case of RWJ sampling, Figures 8 and 9 present Intervals estimator for email-Enron and
DBLP graphs respectively. Intervals estimate for PR sampling can be found in Figures 10 and
11.
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‘1o 20 30 40 50 60 70 80 90 100

Figure 8: email-Enron graph (RWJ sampling): Intervals estimate vs the percentage of quantile
level 6.
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Figure 10: email-Enron graph (PR sampling): Intervals estimate vs the percentage of quantile
level 4.
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Figure 11: DBLP graph (PR sampling): Intervals estimate vs the percentage of quantile level 4.

6 Conclusions

In this work, we have associated Extreme Value Theory of stationary sequences to sampling of
large networks. We show that for any general stationary samples (function of node samples)
meeting two mixing conditions, the knowledge of bivariate distribution or bivariate copula is
sufficient to derive many of its extremal properties. The parameter extremal index (EI) encapsu-
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lates this relation. We relate EI to many relevant extremes in networks like order statistics, first
hitting time, mean cluster size etc. In particular, we model correlation in degrees of adjacent
nodes and examine samples from random walks on degree state space. Finally we have obtained
estimates of EI for a synthetic graph with degree correlations and find a good match with the
theory. We also calculate EI for two real-world networks. In future, we plan to investigate the
relation between assortativity coefficient and EI, and intends to study in detail the EI in real
networks.

Endnotes

(a) Fk()) indicates kth power of F(.) throughout the paper except when k = —1 where it denotes the inverse
function.

(b) ~ stands for asymptotically equal, i.e. f(z) ~ g(z) < f(z)/g(x) — 1 as  — a, € M where the functions
f(x) and g(z) are defined on some set M and a is a limit point of M.

f(z) = o(g(z)) means limz 4 f(z)/g(x) = 0. Also f(z) = O(g(x)) indicates that there exist § > 0 and M >0
such that |f(z)| < M|g(z)| for |z — a|] < 4.
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