3D Trajectories for Action Recognition

Michal Koperski 1 Piotr Bilinski 1 François Bremond 1
1 STARS - Spatio-Temporal Activity Recognition Systems
CRISAM - Inria Sophia Antipolis - Méditerranée
Abstract : Recent development in affordable depth sensors opens new possibilities in action recognition problem. Depth information improves skeleton detection, therefore many authors focused on analyzing pose for action recognition. But still skeleton detection is not robust and fail in more challenging scenarios, where sensor is placed outside of optimal working range and serious occlusions occur. In this paper we investigate state-of-the-art methods designed for RGB videos, which have proved their performance. Then we extend current state-of-the-art algorithms to benefit from depth information without need of skeleton detection. In this paper we propose two novel video descriptors. First combines motion and 3D information. Second improves performance on actions with low movement rate. We validate our approach on challenging MSR DailyActivty3D dataset.
Type de document :
Communication dans un congrès
ICIP - The 21st IEEE International Conference on Image Processing, Oct 2014, Paris, France. 2014
Liste complète des métadonnées

Littérature citée [9 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01054949
Contributeur : Michal Koperski <>
Soumis le : dimanche 10 août 2014 - 21:53:05
Dernière modification le : mardi 24 juillet 2018 - 15:48:06
Document(s) archivé(s) le : mercredi 26 novembre 2014 - 18:15:40

Fichier

koperski-icip.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01054949, version 1

Collections

Citation

Michal Koperski, Piotr Bilinski, François Bremond. 3D Trajectories for Action Recognition. ICIP - The 21st IEEE International Conference on Image Processing, Oct 2014, Paris, France. 2014. 〈hal-01054949〉

Partager

Métriques

Consultations de la notice

555

Téléchargements de fichiers

637