Q. Wang, S. J. Wu, and M. S. Li, Software Defect Prediction, Journal of Software, vol.19, issue.7, pp.1565-1580, 2008.
DOI : 10.3724/SP.J.1001.2008.01565

M. Raimund, P. Witold, and S. Giancarlo, A Comparative Analysis of the Efficiency of Change Metrics and Static Code Attributes for Defect Prediction, 30th International Conference on Software Engineering, pp.181-190, 2008.

T. M. Khoshgoftaar, P. Rebours, and N. Seliya, Software quality analysis by combining multiple projects and learners, Software Quality Journal, vol.5, issue.2, pp.25-49, 2009.
DOI : 10.1007/s11219-008-9058-3

C. Catal and B. Diri, A systematic review of software fault prediction studies, Expert Systems with Applications, vol.36, issue.4, pp.346-7354, 2009.
DOI : 10.1016/j.eswa.2008.10.027

T. Menzies, J. Greenwald, and A. Frank, Data Mining Static Code Attributes to Learn Defect Predictors, IEEE Transactions on Software Engineering, vol.33, issue.1, pp.2-13, 2007.
DOI : 10.1109/TSE.2007.256941

P. Bellini, I. Bruno, P. Nesi, and D. Rogai, Comparing Fault-Proneness Estimation Models, 10th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS'05), pp.205-214, 2005.
DOI : 10.1109/ICECCS.2005.26

N. Nagappan, T. Ball, and A. Zeller, Mining metrics to predict component failures, Proceeding of the 28th international conference on Software engineering , ICSE '06, pp.119-125, 2006.
DOI : 10.1145/1134285.1134349

R. Shatnawi and W. Li, The effectiveness of software metrics in identifying error-prone classes in post-release software evolution process, Journal of Systems and Software, vol.81, issue.11, pp.1868-1882, 2008.
DOI : 10.1016/j.jss.2007.12.794

K. O. Elish and M. O. Elish, Predicting defect-prone software modules using support vector machines, Journal of Systems and Software, vol.81, issue.5, pp.649-660, 2008.
DOI : 10.1016/j.jss.2007.07.040

H. M. Olague, L. H. Etzkorn, and S. L. Messimer, An empirical validation of object-oriented class complexity metrics and their ability to predict error-prone classes in highly iterative, or agile, software: a case study, Journal of Software Maintenance and Evolution: Research and Practice, vol.29, issue.3, pp.171-197, 2008.
DOI : 10.1002/smr.366

Z. Yuming and L. Hareton, Empirical Analysis of Object-Oriented Design Metrics for Predicting High and Low Severity Faults, IEEE Transactions on Software Engineering, vol.32, issue.10, pp.771-789, 2006.
DOI : 10.1109/TSE.2006.102

O. Vandecruys, D. Martens, and B. Baesens, Mining software repositories for comprehensible software fault prediction models, Journal of Systems and Software, vol.81, issue.5, pp.823-839, 2008.
DOI : 10.1016/j.jss.2007.07.034

R. Kohavi and G. H. John, Wrappers for feature subset selection, Artificial Intelligence, vol.97, issue.1-2, pp.273-324, 1997.
DOI : 10.1016/S0004-3702(97)00043-X

J. Han and M. Kamber, Data Mining, 2006.
DOI : 10.1007/978-1-4899-7993-3_104-2

I. H. Witten and E. Frank, Data Mining, Practical Machine Learning Tools and Techniques with Java Implementations, 2000.

T. Menzies, J. S. Distefeno, and M. Chapman, Metrics that matter, 27th Annual NASA Goddard/IEEE Software Engineering Workshop, 2002. Proceedings., pp.51-57, 2002.
DOI : 10.1109/SEW.2002.1199449