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Abstract. It has been long recognized that failure events are correlated, not 

independent. Previous research efforts have shown the correlation analysis of 

system logs is helpful to resource allocation, job scheduling and proactive 

management. However, previous log analysis methods analyze the history logs 

offline. They fail to capture the dynamic change of system errors and failures. 

In this paper, we purpose an online log analysis approach to mine event 

correlations in system logs of large-scale cluster systems. Our contributions are 

three-fold: first, we analyze the event correlations of system logs of a 260-

nodes production Hadoop cluster system, and the result shows that the 

correlation rules of logs change dramatically in different periods; Second, we 

present a online log analysis algorithm Apriori-SO; third, based on the online 

event correlations mining, we present an online event prediction method that 

can predict diversities of failure events with the great detail. The experiment 

result of a 260-nodes production Hadoop cluster system shows that our online 

log analysis algorithm can analyze the log streams to obtain event correlation 

rules in soft real time, and our online event prediction method can achieve 

higher precision rate and recall rate than the offline log analysis approach. 

Keywords: System logs, online log analysis, event correlations, online event 

prediction 

1   Introduction 

As the scale of cluster systems grows in the area of scientific computing and 

commercial applications, failures [7] become normal, and their root causes are 

diversely derived from software, hardware, maintenance (typically by the vendor), 

operations (management of the system), environment (power, facilities, command 

lines), and the infrastructure that supports software distribution, and project 

management [1]. Collected by systems, applications, and tools, logs that record 

important failure events are the first place system administrators go for 

troubleshooting when they are alerted to a problem. The examples of logs include 

/dev/error in Linux systems, data collected by tools like OpenView, IBM Tivoli, 

Microsoft Operations Manager and NetLogger [2]. 

It has been long recognized that failure events are correlated, not independent. For 

example, the work published in the year of 1992 [19] has concluded the impact of 



correlated failures on dependability is significant. Previous research efforts [3] [4] [5] 

[6] have shown the correlation analysis of system logs is promising in event 

prediction and fault diagnosis, and thus it is helpful to resource allocation, job 

scheduling and system management [3] [5] [9]. Recent work shows the analysis of 

logs is useful in mining dependency of distributed system [16][17] or model IT 

service availability [18]. 

Most of previous log analysis methods are offline. The offline log analysis methods 

collect log streams of a long period, for example one or even three months, offline 

preprocess logs for mining event correlation or filter events, and then use the analysis 

result to predict failures or diagnose faults [20]. The offline log analysis methods have 

three drawbacks: first, it is difficult to provide online service, for example event 

prediction, to other runtime service such as a job scheduling system. Second, the 

previous work of Adam Oliner et al [20] shows that over the course of a system’s 

lifetime, anything from software upgrades to minor configuration changes can 

dramatically alter the meaning or character of the logs, while offline log analysis 

methods are weak in capturing the dynamic of failures. Third, offline tools do not 

provide the ability to automatically react to problems [21], however, system 

administrators or autonomic management systems need to deal with the outages in 

time.  

In this paper, we focus on the online log analysis and event prediction, based on 

the event correlations. When we refer to an online log analysis method, we indicate 

three-fold meanings: first, our method can analyze incoming system logs (log stream) 

in a soft real time; second, almost immediately after an event of cluster system occurs, 

our method will mine event correlations in almost real time; third, other systems will 

use mining results for different purposes in time. In this paper, we will show how to 

use mining results for event prediction. We also plan to use these results for fault 

diagnosis or other promising purposes.  

The online log analysis of large-scale cluster systems raises several challenges [15]. 

First, because the meaning or character of the logs changes over the course of the 

lifetime of a cluster system [20], the analysis algorithm should be suitable for 

capturing the dynamic nature of logs or failures. Second, the analysis results should 

be almost real time, accurate and complete for diversities of online systems, for 

example event prediction, fault diagnoses, job scheduling or checkpoint system etc, 

and hence other systems can use the online analysis results. 

As shown in Fig.1, we treat a continuous time flow as several overlapping time 

frames; our system generates events rules that capture the event correlations of logs in 

different time frames and then updates the event rule database that collects event 

rules mined in the whole log history. For example, as shown in Fig.1, at the end of the 

Ith time frame, our system will invoke the job of mining event correlations in the logs 

of the Ith time frame, generate new event rules that capture the event correlations of 

logs in the Ith time frame, and then update the event rule database. In our system, we 

let the Ith time frame overlaps the (I+1)th time frame. This choice is because that we 

need to mine the correlations of events in adjacent time frames, and if two adjacent 

time frames are disjoint, some event correlations will be ignored.  
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Fig. 1. Basic idea of our online log analysis system. 

Our contributions are three-fold. First, we analyze the correlations of logs of a 260-

nodes production Hadoop cluster system, and the analysis result shows that the 

correlation rules of logs change dramatically in different periods; Second, we design 

and implement the first online log analysis algorithm Apriori-SO that supports the 

online log filtering and event correlations mining; third, based on the online event 

correlations mining, we present an online event prediction method that can predict 

diversities of failure events with the great detail. We use an emulation methodology 

to analyze and predict the event logs of a 260-nodes production Hadoop cluster 

systems in the Research Institution of China Mobile. The experiment result shows that 

our online log analysis system can analyze the log streams to obtain event correlation 

rule in soft real time and our online event prediction system can achieve more 

precision rate and recall rate than our previous offline log analysis system.  

The paper is organized as follows: In Section 2, we describe the related work. 

Section 3 justifies our motivation of the online log analysis. Section 4 presents the 

design and implementation of our online event correlation mining and online event 

prediction systems. The evaluation of the system is summarized in Section 5. We 

draw a conclusion and discuss the future work in Section 6. 

2   Related work 

Most of traditional log analysis methods are offline. Some work uses statistical 

analysis approach to find simple temporal and spatial laws or models of system events 

[6] [5] [10] [11] in large-scale cluster systems like BlueGene/L. When the obtained 

knowledge is used in event prediction, it may bring high precision rate and recall rate, 

however it is compared with the filtered logs obtained with the aggressive filtering 

policy. For example, in the work of [10], 99.96% of original logs are filtered. With 



the aggressive filtering policy, the important failure patterns [22] or warning 

messages [10] , which are often the symptom of fatal errors, may be ignored. Besides, 

the predicted events are coarse without the detail.  

The work of [3] applied time-series algorithms, rule-based classification 

techniques, and Bayesian network model to assess the effectiveness of these 

techniques in predicting failure in a cluster. However it either focuses on specific 

types of failures or targets small scale systems, thus not sufficient for large-scale 

clusters [6].   

Rule-based algorithms are used in some papers [3] [6] [8] [12]. The work of [6] 

presents a meta-learning method based on statistical analysis and standard association 

rule algorithm. The rule-based algorithms only consider the correlations between two 

event types. If we consider the correlations across multiple event types, the precision 

of event prediction will improve. 

Besides, they did not consider the dynamic change of failure correlations over time. 

3   Motivation: why online log analysis is necessary? 

To analyze the log of large-scale cluster systems, in our previous work, we have 

developed an offline log analysis system named LogMaster to mine the event 

correlations of logs.  

In this section, we present some offline log analysis results to justify our 

motivation of online log analysis. 

3.1   The description of the Hadoop system 

We used LogMaster to analyze and predict the logs of a production Hadoop cluster 

system in the Research Institution of China Mobile, which is the largest telecom 

operator in the world. The production cluster system is used to run a series of data-

intensive applications based on Hadoop [15]. The system has 260 nodes, including 10 

servers and 250 data nodes. Data nodes are used to run Hadoop applications, while 

servers are used to analyze logs or manage system.  

Inspired by Google's MapReduce and Google File System (GFS), Apache Hadoop 

is a Java software framework that supports data-intensive distributed applications 

under a free license. It enables applications to work with thousands of nodes and 

petabytes of data. 

3.2   The introduction of offline log analysis 

The detail of the offline log analysis method can be found in our previous work 

[13]. To save space, in this section, we only give the short description of concepts and 

methods.  



Event preprocessing: 

Because of the different sources of event logs, the logs have different formats: text 

files, databases, or special file formats generated by programs. The log preprocessing 

step parses the variant log files into a nine-tuples (timestamp, log id, node id, event id, 

severity, event type, application name, process id, user). The severity degrees include 

INFO, WARNING, ERROR, FAILURE, FAULT, and the event types include 

HARDWARE, SYSTEM, APPLICATION, FILESYSTEM, NETWORK, etc. The 

attributions of timestamp, node id, application name, process id and user are easily 

obtained. The event id and log id are respectively the mapping functions of 2-tuples 

(severity, type) and 4-tuple (node id, event id, application, process id). For an 

upcoming event, the event id is generated according to 2-tuples (severity, type). If a 

new 2-tuples (severity, type) is reported, a new event id will be assigned to this event. 

If a new 4-tuple (node id, event id, application, process id) is reported, a new log id 

will be assigned to this event.  

Event correlations mining: 

For an event pair (A, B), of which event A occurs before event B within a 

predefined sliding time windows of the log buffer (in short sliding time window), we 

call event A is event B’s preceding event, and event B is event A’s posterior event. The 

support count is the recurring times of the preceding event which is followed by the 

posterior event, while the posterior count is the recurring times of the posterior event 

which follows the preceding event. For example, for an event sequence ACBBA, the 

support count of (A, B) is one and the posterior count is two. We define the 

confidence of (A, B) as follows:  

Confidence (A, B) = support count (A, B) / count (A). 

If an event pair occurs within the predefined time window and the support count 

and confidence of the event pair exceeds the predefined support count threshold and 

confidence threshold, we call it an event rule. 

The time relation of offline log analysis is shown in Fig.2. The Apriori-S algorithm 

scans the whole log history to get the 2-items event rules using statistical analysis, and 

generates candidate k-items rules (k>2) based on (k-1)-items rules, then scans the 

whole log history to validate the candidate k-items rules and get k-items rules. 

 

Fig. 2. Time relation in the offline failure analysis approach. 



We give an example of 3-item event rules (911->913->985) here. 911, 913 and 

985 are three different log id, their details are as follows:  

…… 

Nov 28 13:42:13 compute-5-4.local rpc.statd[2579]: Caught signal 15, un-

registering and exiting.  

Nov 28 13:44:17 compute-5-4.local sshd[1653]: error: Bind to port 22 on 0.0.0.0 

failed: Address already in use.  

Nov 28 13:45:33 compute-5-12.local sshd[1655]: error: Bind to port 22 on 0.0.0.0 

failed: Address already in use. 

Event prediction: 

Based on the event rules, a failure predictor can help determine possible 

occurrences of important events in the near future.  

As shown in Fig.2, the system begins predicting failures at the timing of the 

predicting point.  The occurring time of predicted failure is called the predicted 

point. The prediction time is the time difference between the predicting point and the 

predicted point. The prediction time is the time span left for the autonomic system or 

system administrator to respond with possible upcoming failures.  

When the system predicts failures at the predicting point, the events having 

occurred at the prediction time window will be used to predict events. When using our 

system to predict failures, the system administrator can predefine the prediction valid 

duration that is the time difference between predicting point and the expiration point. 

If the predicted event occurs within the prediction valid duration, we consider it valid, 

else we consider it invalid. 

Our system can predict failure events with great detail. For example, a predicted 

event includes the following information: predicted point, log id, node id, application 

name, event type, and event severity. 

3.3 Experiment results 

Our work analyzes three month’s logs of a 260-nodes production Hadoop cluster 

system in the Research Institution of China Mobile. The logs are collected between 

Oct 26, 2008 and Dec 31, 2008, which includes 977,858 original event entries.  

We use a server to analyze the logs. The server has two Intel Xeon Quad-Core 

E5405 2.0GHZ processors, 137GB disk, and 8G memory.  

We divide three months’ logs into three disjoint periods: (1) Period one: from Oct 

26, 2008 to Nov 16, 2008; (2) Period two: from Nov 17, 2008 to Dec 08, 2008; (3) 

Period three: from Dec 09, 2008 to Dec 31, 2008. We independently mine event rules 

in different periods, and then we compare event rules mined in different periods. The 

comparison of event rules is shown in Table 1. From Table 1, we can observe that the 

event rules dramatically change in different periods. For example, there are only 12 

same events rules occurring in both Period one and Period two. This has several 

possible causes: (1) the repair of the failure or the self-healing of systems or 

applications cause some failure events disappear; (2) changes of events in the system 

or applications; (3) new coming failure events. 



Table 1.  The comparison of event rules in different periods (log buffer =60 minutes, support 

count threshold =5, confidence threshold =0.5). 

number of same event rules period 1 period 2 period 3 

period 1 133 12 5 

period 2  51 6 

period 3   48 

 

Finally, we use the event rules obtained from Period I to predict events in Period J. 

The experiment result is shown in Fig.3. From Fig.3, we can see that if we use event 

rules in a period to predict events in another period, the precision rate is low. 

However, if we use event rules in a period to predict events in the same period, the 

precision rate is higher.  

 

0

10

20

30

40

50

60

70

80

90

100

Rules of

Period 1

Rules of

Period 2

Rules of

Period 3

P
r
e
c
i
s
i
o
n
 
r
a
t
e
 
o
f
 
p
r
e
d
i
c
t
i
o
n
(
%
)

Predicted

events in

Period 1

Predicted

events in

Period 2

Predicted

events in

Period 3

 

Fig. 3. The precision rate of event prediction using vent rules in different period. (Log 

buffer =60 minutes, prediction time window = 60 minutes, support count threshold =5, 

confidence threshold =0.5). The precision rate of event prediction is defined in Section 5.1. 

Our observation is complementary to the previous work of Adam Oliner et al [20]. 

The previous work of Adam Oliner et al show that over the course of a system’s 

lifetime, anything from software upgrades to minor configuration changes can 

dramatically alter the meaning or character of the logs. Both observations justify our 

motivation of online log analysis. 

4   Online log analysis and event prediction 

In this section, we introduce the online log analysis algorithm and the online event 

prediction method. In this section, we use the same concepts introduced in Section 3.2. 



4.1   Online log analysis 

Different from Apriori-S algorithm described in our previous work [13], we use a 

sliding time window model as shown in Fig.4 so as to analyze the event log streams. 

The logs in the sliding time window are saved into the log buffer. When all the logs in 

the time windows are read into the log buffer, the online log analysis system will 

analyze the logs in the two adjacent log buffers to generate new event rules and then 

update the event rule base. 

 

Fig. 4. Time relation in our online failure analysis approach. 

4.2   Apriori-SO event correlations mining algorithm 

For event logs in multiple nodes of cluster systems, we take the following facts into 

accounts: (1) the replicated applications in multiple nodes may have the same errors 

or software bugs, and failure events may appear in multiple nodes; (2) nodes in large-

scale computing systems transfer data and communicate with each other, so a failure 

on one node may cause related failures on other nodes; (3) a failure on one node may 

change the environment of the system, which may cause other failures on other nodes. 

So as to analyze the correlation of failure events among multiple nodes, we use a log 

filtering policy that only analyzes events occurring in the same node or having the 

same event types or of the same applications. It can effectively reduce the size of the 

analyzed logs and decrease the analysis time. 

On the basis of the Apriori associate rule mining algorithms [13], we propose an 

improved algorithm, named Apriori-SO, to get the frequent itemsets with the support 

count above the user-defined threshold value.  

The Apriori-SO algorithm is a one-pass algorithm, which is described as below: 

(1) Proper thresholds of support Sth and confidence Cth are predefined; the proper 

sliding time window Tb is defined too. 

(2) Suppose B is the current log buffer, and Bp is the preceding log buffer. Suppose 

C (k) means the set of frequent k-items event set candidates, F (k) means the set of 

frequent k-item event set, R (k) means the set of k-item event rules. Set R (2) = {};  



(3) If a new event e comes, add e into the log buffer B. If all events in the current 

time window is read into the current log buffer, goto step (4); else loop step (3). 

(4) Scan the log buffer B and Bp, count the number of each event, and support 

count and posterior count of each event pair (i , j) while i and j are both in B,or i in Bp 

and j in B. 

(5) Calculate cumulative number of each event, and support and confidence of 

each event pair (i, j). Update the support and posterior of event rules in R (2), and add 

new event rules if the support and confidence of an event pair are above thresholds. 

(6) Get new frequent k-items (k>=3) event set candidates. If two adjacent subsets 

of a k-items event set are in F (k-1), add the k-items event set into C (k). For example, 

if (A,B) and (B,C) are frequent 2-items event set, then the 3-items event set (A,B,C) 

are frequent 3-items event set candidates and add it into C(3). 

(7) Scan the B and Bp to get the support count and posterior count of event pairs in 

C (k). We regard the log buffer B and Bp as the sampling of the log history, and 

calculate the approximate value of support count and posterior count of each event 

pair in C (k);  

(8) Add the k-items candidates in C (k) having support count above the threshold 

to F (k), and add the k-items in F (k) having confidence above the threshold to R (k); 

The 2-items event rules are generated in step (2) and step (3). In the step (2) and 

step (3), we only consider the event set that have the same node name or event type or 

of the same application name occurring in the time window Tb which is defined in 

step (1). This event filtering policy can reduce the amount of event logs effectively.  

Based on the 2-items rules, the k-items rules are generated in step (4). Different 

from the Apriori-S algorithm which get the support of the candidate rules by scanning 

the whole log history (Shown in Fig. 2), we get the approximation value of support 

count of k-items rules based on the support count of (k-1)-items rules. 

4.3   Online event prediction 

The online event prediction is shown in Fig.5. The concepts of predicting point, 

predicted point, prediction valid duration, prediction time, and prediction time 

window are same like that of offline log analysis, which are explained in Section 3.2. 

 

Fig. 5. Time relation of our online event prediction approach. 



As shown in Fig.5, the difference of the online event prediction method from our 

previous offline one is that at the end of each time frame, we will generate new event 

rules and update the event rule database. Finally, we use the updated event rules to 

predict upcoming events. The implementation of our online event prediction system is 

same like that in our previous work [13]. 

We find all the correlated events of coming log in the prediction time window. The 

current state of system is determined according to these events, and the upcoming 

correlated events are predicted based on the event rules.  

5   Experiments  

The target Hadoop system and its system logs in our experiment are described in 

Section 3.2. In our experiment, we preprocess and analyze the logs between Oct 26, 

2008 and Dec 31, 2008. The event rules generated according to the event logs are 

used to online predict the event logs in Jan, 2009. 

5.1   Metrics 

We use the analysis time, the memory usage of the Log server node to evaluate the 

overhead of our online log analysis system, and compare the precision rate, the recall 

rate, and the average prediction time to evaluate our online event prediction system. 

(1) Average analysis time 

The compute complexity means the time and space utilization of algorithm, 

including time complexity and space complexity. In this experiment, we use the 

average analysis time and the average analysis time of time frames to evaluate the 

compute complexity.  

As shown in Fig.5, the analysis time is the time difference between the beginning 

and ending timing points of event preprocessing, filtering and correlations mining.  

    Average analysis time = the total analysis time / count of event logs 

    Average analysis time of time frames = the total analysis time / count of time 

frames 

(2) Precision rate and Recall rate 

The precision rate means the ratio of the correctly predicted events to all predicted 

events. The recall rate means the ratio of correctly predicted events to all forthcoming 

events. 

    True Positive (TP) = the count of events which are correctly predicted 

    False Positive (FP) = the count of events which are predicted but not 

appeared in the time window  

    Precision rate = TP / (TP + FP) 

    Recall rate = True Positive/ count of all events 

(3) Average prediction time 

The prediction time is defined in Section 3.2. The prediction time is the time span 

left for the autonomic system or system administrator to respond with the possible 

upcoming failures.  



5.2 The experimental methodology 

Our online event correlation system includes two major components: Log agents 

and Log server. Log agents in each data node collect logs and transfer logs to Log 

server in almost real time. After Log server receives all the logs of a time frame, it 

will preprocess and filter the log stream, and mine the new event rules.  

In our experiment, we use an emulation methodology. Instead of log agents on 

each data node sending logs to the log server, we use a program on another node to 

replay the logs of the 260-nodes Hadoop cluster systems, and send the logs to Log 

server in real time according to the timestamp of each event in logs. 

5.3   Online log analysis 

After log preprocessing and filtering, the event logs are used to analyze the failure 

correlations.  

When the 38432 logs between Oct 26, 2008 and Dec 31, 2008 are analyzed by our 

Apriori-SO algorithm, the support threshold and the confidence threshold are 

respectively set to 0.5 and 0.25 through comparing several runs of experiments with 

different configurations. 

The average analysis time and the analysis time of time frames are shown in Fig.6 

with the varying time windows of the log buffer. We can see from Fig.6 that the 

average analysis time of time frames increases with the sliding time window of the 

log buffer, and the average analysis time decreases.  
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Fig. 6. Average analysis time and average analysis time of time frames V.S. time window 

of Log buffer Tb (Sth=5, Cth=0.25).  

The number of event rules is shown in Fig.7 with the varying time window of the 

log buffer. We can observe in Fig.7 that the number of event rules also increases with 

the size of log buffer. That is to say, the integrity of associate event rules is related to 

the increase of the set of log buffer.  
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Fig. 7. Number of event rules V.S. Log buffer Tb (Sth=5, Cth=0.25).  

5.4   Online event prediction 

Together with the online log analysis, online event prediction is used to predict 

upcoming events based on the event rules. Based on event rules generated with the 

Apriori-SO algorithm, the logs are used to online predict events. In our experiment, 

we online analyze the event logs between Oct, 2008 and Dec, 2008, and then use 

these event rules to online predict the event logs in Jan, 2009. 

When the support threshold and confidence threshold are respectively set to 5 and 

0.25, and the prediction valid duration of online prediction is set as 60 minutes, the 

result is shown in Fig.8. 
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Fig. 8. Precision rate and Recall rate of online prediction V.S. Log Buffer (Sth=5, Cth=0.25, 

Prediction valid duration=60 minutes)  



When the log buffer of online log analysis is set as 60 minutes, the support 

threshold and confidence threshold are respectively set to 5 and 0.25. The result 

shows that the number of event rules increases from 355 to 386. 

In Fig.9 and Fig.10, we compare our online prediction approach with our previous 

prediction approach based on the offline log analysis. Fig.9 presents the relationship 

between the precision rate and the prediction valid duration for both online and offline 

event prediction. Fig.10 presents the relationship between the recall rate and the 

prediction valid duration for both online and offline event prediction. 
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Fig. 9. Precision rate of online and offline prediction V.S. Prediction valid duration (log 

buffer=60 minutes, Sth=5, Cth=0.25) 
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Fig. 10. Recall rate of online and offline prediction V.S. Prediction valid duration (log 

buffer=60 minutes, Sth=5, Cth=0.25) 

It can be seen from Fig.9 and Fig.10 that the precision rate and recall rate of online 

prediction are higher than offline prediction. It demonstrates that the online log 

analysis can effectively represent the dynamic change of event rules. 
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Fig. 11. Average prediction time of online and offline prediction V.S. Prediction valid 

duration (log buffer=60 minutes, Sth=5, Cth=0.25) 

The relationship between the average prediction time and prediction valid duration 

is shown in Fig.11. The difference between the average prediction time of online 

prediction and that of offline prediction are small.  

6   Conclusion 

In this paper, we present an online log analysis approach to analyze event logs of 

large-scale cluster systems. After online preprocessing and filtering, filtered logs are 

used to mine failure correlations and generate associate event rules online. We 

propose an improved Apriori associate rules algorithm named Apriori-SO to analyze 

the event logs. The Apriori-SO algorithm uses the sliding time window model and 

stores the log streams to log buffer, and analyze the log buffer to generate new rules 

and update the existed rules. Based on the observation that most of events rules occur 

in the same nodes or applications or have the same types, the Apriori-SO algorithm 

use an event filtering policy to reduce the computing complexity. 

The event rules generated by Apriori-SO algorithm can be used in online event 

prediction. The experiments on a production cluster system in the Research Institution 

of China Mobile show that our algorithms can achieve good precision rate in event 

prediction. 

In the near future, we will integrate path-based request tracing [22] and event 

correlation mining approaches to diagnosis the failure events and performance 

problems of Internet services applications. Much work will be done to analyze multi-

dimensional event logs in large-scale cluster systems [23]. 
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