
HAL Id: hal-01054978
https://inria.hal.science/hal-01054978

Submitted on 11 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Online Event Correlations Analysis in System Logs of
Large-Scale Cluster Systems

Wei Zhou, Jianfeng Zhan, Dan Meng, Zhihong Zhang

To cite this version:
Wei Zhou, Jianfeng Zhan, Dan Meng, Zhihong Zhang. Online Event Correlations Analysis in System
Logs of Large-Scale Cluster Systems. IFIP International Conference on Network and Parallel Comput-
ing (NPC), Sep 2010, Zhengzhou, China. pp.262-276, �10.1007/978-3-642-15672-4_23�. �hal-01054978�

https://inria.hal.science/hal-01054978
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Online Event Correlations Analysis in System logs of

Large-scale Cluster Systems

Wei Zhou1, Jianfeng Zhan1, Dan Meng1, Zhihong Zhang2

1 Institute of Computing Technology, Chinese Academy of Sciences
2 The Research Institution of China Mobile

zhouwei@ncic.ac.cn

Abstract. It has been long recognized that failure events are correlated, not

independent. Previous research efforts have shown the correlation analysis of

system logs is helpful to resource allocation, job scheduling and proactive

management. However, previous log analysis methods analyze the history logs

offline. They fail to capture the dynamic change of system errors and failures.

In this paper, we purpose an online log analysis approach to mine event

correlations in system logs of large-scale cluster systems. Our contributions are

three-fold: first, we analyze the event correlations of system logs of a 260-

nodes production Hadoop cluster system, and the result shows that the

correlation rules of logs change dramatically in different periods; Second, we

present a online log analysis algorithm Apriori-SO; third, based on the online

event correlations mining, we present an online event prediction method that

can predict diversities of failure events with the great detail. The experiment

result of a 260-nodes production Hadoop cluster system shows that our online

log analysis algorithm can analyze the log streams to obtain event correlation

rules in soft real time, and our online event prediction method can achieve

higher precision rate and recall rate than the offline log analysis approach.

Keywords: System logs, online log analysis, event correlations, online event

prediction

1 Introduction

As the scale of cluster systems grows in the area of scientific computing and

commercial applications, failures [7] become normal, and their root causes are

diversely derived from software, hardware, maintenance (typically by the vendor),

operations (management of the system), environment (power, facilities, command

lines), and the infrastructure that supports software distribution, and project

management [1]. Collected by systems, applications, and tools, logs that record

important failure events are the first place system administrators go for

troubleshooting when they are alerted to a problem. The examples of logs include

/dev/error in Linux systems, data collected by tools like OpenView, IBM Tivoli,

Microsoft Operations Manager and NetLogger [2].

It has been long recognized that failure events are correlated, not independent. For

example, the work published in the year of 1992 [19] has concluded the impact of

correlated failures on dependability is significant. Previous research efforts [3] [4] [5]

[6] have shown the correlation analysis of system logs is promising in event

prediction and fault diagnosis, and thus it is helpful to resource allocation, job

scheduling and system management [3] [5] [9]. Recent work shows the analysis of

logs is useful in mining dependency of distributed system [16][17] or model IT

service availability [18].

Most of previous log analysis methods are offline. The offline log analysis methods

collect log streams of a long period, for example one or even three months, offline

preprocess logs for mining event correlation or filter events, and then use the analysis

result to predict failures or diagnose faults [20]. The offline log analysis methods have

three drawbacks: first, it is difficult to provide online service, for example event

prediction, to other runtime service such as a job scheduling system. Second, the

previous work of Adam Oliner et al [20] shows that over the course of a system’s

lifetime, anything from software upgrades to minor configuration changes can

dramatically alter the meaning or character of the logs, while offline log analysis

methods are weak in capturing the dynamic of failures. Third, offline tools do not

provide the ability to automatically react to problems [21], however, system

administrators or autonomic management systems need to deal with the outages in

time.

In this paper, we focus on the online log analysis and event prediction, based on

the event correlations. When we refer to an online log analysis method, we indicate

three-fold meanings: first, our method can analyze incoming system logs (log stream)

in a soft real time; second, almost immediately after an event of cluster system occurs,

our method will mine event correlations in almost real time; third, other systems will

use mining results for different purposes in time. In this paper, we will show how to

use mining results for event prediction. We also plan to use these results for fault

diagnosis or other promising purposes.

The online log analysis of large-scale cluster systems raises several challenges [15].

First, because the meaning or character of the logs changes over the course of the

lifetime of a cluster system [20], the analysis algorithm should be suitable for

capturing the dynamic nature of logs or failures. Second, the analysis results should

be almost real time, accurate and complete for diversities of online systems, for

example event prediction, fault diagnoses, job scheduling or checkpoint system etc,

and hence other systems can use the online analysis results.

As shown in Fig.1, we treat a continuous time flow as several overlapping time

frames; our system generates events rules that capture the event correlations of logs in

different time frames and then updates the event rule database that collects event

rules mined in the whole log history. For example, as shown in Fig.1, at the end of the

Ith time frame, our system will invoke the job of mining event correlations in the logs

of the Ith time frame, generate new event rules that capture the event correlations of

logs in the Ith time frame, and then update the event rule database. In our system, we

let the Ith time frame overlaps the (I+1)th time frame. This choice is because that we

need to mine the correlations of events in adjacent time frames, and if two adjacent

time frames are disjoint, some event correlations will be ignored.

updating event
rule database

updating event
rule database

Ith time

frame (I+1)th time

frame

Analysis time for

generating new
event rules

Analysis time for

generating new
event rules

Invoke the job of
mining event

correlations in the logs
of Ith time frame

Invoke the job of mining

event correlations in the
logs of (I+1)th time frame

Time flow

Fig. 1. Basic idea of our online log analysis system.

Our contributions are three-fold. First, we analyze the correlations of logs of a 260-

nodes production Hadoop cluster system, and the analysis result shows that the

correlation rules of logs change dramatically in different periods; Second, we design

and implement the first online log analysis algorithm Apriori-SO that supports the

online log filtering and event correlations mining; third, based on the online event

correlations mining, we present an online event prediction method that can predict

diversities of failure events with the great detail. We use an emulation methodology

to analyze and predict the event logs of a 260-nodes production Hadoop cluster

systems in the Research Institution of China Mobile. The experiment result shows that

our online log analysis system can analyze the log streams to obtain event correlation

rule in soft real time and our online event prediction system can achieve more

precision rate and recall rate than our previous offline log analysis system.

The paper is organized as follows: In Section 2, we describe the related work.

Section 3 justifies our motivation of the online log analysis. Section 4 presents the

design and implementation of our online event correlation mining and online event

prediction systems. The evaluation of the system is summarized in Section 5. We

draw a conclusion and discuss the future work in Section 6.

2 Related work

Most of traditional log analysis methods are offline. Some work uses statistical

analysis approach to find simple temporal and spatial laws or models of system events

[6] [5] [10] [11] in large-scale cluster systems like BlueGene/L. When the obtained

knowledge is used in event prediction, it may bring high precision rate and recall rate,

however it is compared with the filtered logs obtained with the aggressive filtering

policy. For example, in the work of [10], 99.96% of original logs are filtered. With

the aggressive filtering policy, the important failure patterns [22] or warning

messages [10] , which are often the symptom of fatal errors, may be ignored. Besides,

the predicted events are coarse without the detail.

The work of [3] applied time-series algorithms, rule-based classification

techniques, and Bayesian network model to assess the effectiveness of these

techniques in predicting failure in a cluster. However it either focuses on specific

types of failures or targets small scale systems, thus not sufficient for large-scale

clusters [6].

Rule-based algorithms are used in some papers [3] [6] [8] [12]. The work of [6]

presents a meta-learning method based on statistical analysis and standard association

rule algorithm. The rule-based algorithms only consider the correlations between two

event types. If we consider the correlations across multiple event types, the precision

of event prediction will improve.

Besides, they did not consider the dynamic change of failure correlations over time.

3 Motivation: why online log analysis is necessary?

To analyze the log of large-scale cluster systems, in our previous work, we have

developed an offline log analysis system named LogMaster to mine the event

correlations of logs.

In this section, we present some offline log analysis results to justify our

motivation of online log analysis.

3.1 The description of the Hadoop system

We used LogMaster to analyze and predict the logs of a production Hadoop cluster

system in the Research Institution of China Mobile, which is the largest telecom

operator in the world. The production cluster system is used to run a series of data-

intensive applications based on Hadoop [15]. The system has 260 nodes, including 10

servers and 250 data nodes. Data nodes are used to run Hadoop applications, while

servers are used to analyze logs or manage system.

Inspired by Google's MapReduce and Google File System (GFS), Apache Hadoop

is a Java software framework that supports data-intensive distributed applications

under a free license. It enables applications to work with thousands of nodes and

petabytes of data.

3.2 The introduction of offline log analysis

The detail of the offline log analysis method can be found in our previous work

[13]. To save space, in this section, we only give the short description of concepts and

methods.

Event preprocessing:

Because of the different sources of event logs, the logs have different formats: text

files, databases, or special file formats generated by programs. The log preprocessing

step parses the variant log files into a nine-tuples (timestamp, log id, node id, event id,

severity, event type, application name, process id, user). The severity degrees include

INFO, WARNING, ERROR, FAILURE, FAULT, and the event types include

HARDWARE, SYSTEM, APPLICATION, FILESYSTEM, NETWORK, etc. The

attributions of timestamp, node id, application name, process id and user are easily

obtained. The event id and log id are respectively the mapping functions of 2-tuples

(severity, type) and 4-tuple (node id, event id, application, process id). For an

upcoming event, the event id is generated according to 2-tuples (severity, type). If a

new 2-tuples (severity, type) is reported, a new event id will be assigned to this event.

If a new 4-tuple (node id, event id, application, process id) is reported, a new log id

will be assigned to this event.

Event correlations mining:

For an event pair (A, B), of which event A occurs before event B within a

predefined sliding time windows of the log buffer (in short sliding time window), we

call event A is event B’s preceding event, and event B is event A’s posterior event. The

support count is the recurring times of the preceding event which is followed by the

posterior event, while the posterior count is the recurring times of the posterior event

which follows the preceding event. For example, for an event sequence ACBBA, the

support count of (A, B) is one and the posterior count is two. We define the

confidence of (A, B) as follows:

Confidence (A, B) = support count (A, B) / count (A).

If an event pair occurs within the predefined time window and the support count

and confidence of the event pair exceeds the predefined support count threshold and

confidence threshold, we call it an event rule.

The time relation of offline log analysis is shown in Fig.2. The Apriori-S algorithm

scans the whole log history to get the 2-items event rules using statistical analysis, and

generates candidate k-items rules (k>2) based on (k-1)-items rules, then scans the

whole log history to validate the candidate k-items rules and get k-items rules.

Fig. 2. Time relation in the offline failure analysis approach.

We give an example of 3-item event rules (911->913->985) here. 911, 913 and

985 are three different log id, their details are as follows:

……

Nov 28 13:42:13 compute-5-4.local rpc.statd[2579]: Caught signal 15, un-

registering and exiting.

Nov 28 13:44:17 compute-5-4.local sshd[1653]: error: Bind to port 22 on 0.0.0.0

failed: Address already in use.

Nov 28 13:45:33 compute-5-12.local sshd[1655]: error: Bind to port 22 on 0.0.0.0

failed: Address already in use.

Event prediction:

Based on the event rules, a failure predictor can help determine possible

occurrences of important events in the near future.

As shown in Fig.2, the system begins predicting failures at the timing of the

predicting point. The occurring time of predicted failure is called the predicted

point. The prediction time is the time difference between the predicting point and the

predicted point. The prediction time is the time span left for the autonomic system or

system administrator to respond with possible upcoming failures.

When the system predicts failures at the predicting point, the events having

occurred at the prediction time window will be used to predict events. When using our

system to predict failures, the system administrator can predefine the prediction valid

duration that is the time difference between predicting point and the expiration point.

If the predicted event occurs within the prediction valid duration, we consider it valid,

else we consider it invalid.

Our system can predict failure events with great detail. For example, a predicted

event includes the following information: predicted point, log id, node id, application

name, event type, and event severity.

3.3 Experiment results

Our work analyzes three month’s logs of a 260-nodes production Hadoop cluster

system in the Research Institution of China Mobile. The logs are collected between

Oct 26, 2008 and Dec 31, 2008, which includes 977,858 original event entries.

We use a server to analyze the logs. The server has two Intel Xeon Quad-Core

E5405 2.0GHZ processors, 137GB disk, and 8G memory.

We divide three months’ logs into three disjoint periods: (1) Period one: from Oct

26, 2008 to Nov 16, 2008; (2) Period two: from Nov 17, 2008 to Dec 08, 2008; (3)

Period three: from Dec 09, 2008 to Dec 31, 2008. We independently mine event rules

in different periods, and then we compare event rules mined in different periods. The

comparison of event rules is shown in Table 1. From Table 1, we can observe that the

event rules dramatically change in different periods. For example, there are only 12

same events rules occurring in both Period one and Period two. This has several

possible causes: (1) the repair of the failure or the self-healing of systems or

applications cause some failure events disappear; (2) changes of events in the system

or applications; (3) new coming failure events.

Table 1. The comparison of event rules in different periods (log buffer =60 minutes, support

count threshold =5, confidence threshold =0.5).

number of same event rules period 1 period 2 period 3

period 1 133 12 5

period 2 51 6

period 3 48

Finally, we use the event rules obtained from Period I to predict events in Period J.

The experiment result is shown in Fig.3. From Fig.3, we can see that if we use event

rules in a period to predict events in another period, the precision rate is low.

However, if we use event rules in a period to predict events in the same period, the

precision rate is higher.

0

10

20

30

40

50

60

70

80

90

100

Rules of

Period 1

Rules of

Period 2

Rules of

Period 3

P
r
e
c
i
s
i
o
n

r
a
t
e

o
f

p
r
e
d
i
c
t
i
o
n
(
%
)

Predicted

events in

Period 1

Predicted

events in

Period 2

Predicted

events in

Period 3

Fig. 3. The precision rate of event prediction using vent rules in different period. (Log

buffer =60 minutes, prediction time window = 60 minutes, support count threshold =5,

confidence threshold =0.5). The precision rate of event prediction is defined in Section 5.1.

Our observation is complementary to the previous work of Adam Oliner et al [20].

The previous work of Adam Oliner et al show that over the course of a system’s

lifetime, anything from software upgrades to minor configuration changes can

dramatically alter the meaning or character of the logs. Both observations justify our

motivation of online log analysis.

4 Online log analysis and event prediction

In this section, we introduce the online log analysis algorithm and the online event

prediction method. In this section, we use the same concepts introduced in Section 3.2.

4.1 Online log analysis

Different from Apriori-S algorithm described in our previous work [13], we use a

sliding time window model as shown in Fig.4 so as to analyze the event log streams.

The logs in the sliding time window are saved into the log buffer. When all the logs in

the time windows are read into the log buffer, the online log analysis system will

analyze the logs in the two adjacent log buffers to generate new event rules and then

update the event rule base.

Fig. 4. Time relation in our online failure analysis approach.

4.2 Apriori-SO event correlations mining algorithm

For event logs in multiple nodes of cluster systems, we take the following facts into

accounts: (1) the replicated applications in multiple nodes may have the same errors

or software bugs, and failure events may appear in multiple nodes; (2) nodes in large-

scale computing systems transfer data and communicate with each other, so a failure

on one node may cause related failures on other nodes; (3) a failure on one node may

change the environment of the system, which may cause other failures on other nodes.

So as to analyze the correlation of failure events among multiple nodes, we use a log

filtering policy that only analyzes events occurring in the same node or having the

same event types or of the same applications. It can effectively reduce the size of the

analyzed logs and decrease the analysis time.

On the basis of the Apriori associate rule mining algorithms [13], we propose an

improved algorithm, named Apriori-SO, to get the frequent itemsets with the support

count above the user-defined threshold value.

The Apriori-SO algorithm is a one-pass algorithm, which is described as below:

(1) Proper thresholds of support Sth and confidence Cth are predefined; the proper

sliding time window Tb is defined too.

(2) Suppose B is the current log buffer, and Bp is the preceding log buffer. Suppose

C (k) means the set of frequent k-items event set candidates, F (k) means the set of

frequent k-item event set, R (k) means the set of k-item event rules. Set R (2) = {};

(3) If a new event e comes, add e into the log buffer B. If all events in the current

time window is read into the current log buffer, goto step (4); else loop step (3).

(4) Scan the log buffer B and Bp, count the number of each event, and support

count and posterior count of each event pair (i , j) while i and j are both in B,or i in Bp

and j in B.

(5) Calculate cumulative number of each event, and support and confidence of

each event pair (i, j). Update the support and posterior of event rules in R (2), and add

new event rules if the support and confidence of an event pair are above thresholds.

(6) Get new frequent k-items (k>=3) event set candidates. If two adjacent subsets

of a k-items event set are in F (k-1), add the k-items event set into C (k). For example,

if (A,B) and (B,C) are frequent 2-items event set, then the 3-items event set (A,B,C)

are frequent 3-items event set candidates and add it into C(3).

(7) Scan the B and Bp to get the support count and posterior count of event pairs in

C (k). We regard the log buffer B and Bp as the sampling of the log history, and

calculate the approximate value of support count and posterior count of each event

pair in C (k);

(8) Add the k-items candidates in C (k) having support count above the threshold

to F (k), and add the k-items in F (k) having confidence above the threshold to R (k);

The 2-items event rules are generated in step (2) and step (3). In the step (2) and

step (3), we only consider the event set that have the same node name or event type or

of the same application name occurring in the time window Tb which is defined in

step (1). This event filtering policy can reduce the amount of event logs effectively.

Based on the 2-items rules, the k-items rules are generated in step (4). Different

from the Apriori-S algorithm which get the support of the candidate rules by scanning

the whole log history (Shown in Fig. 2), we get the approximation value of support

count of k-items rules based on the support count of (k-1)-items rules.

4.3 Online event prediction

The online event prediction is shown in Fig.5. The concepts of predicting point,

predicted point, prediction valid duration, prediction time, and prediction time

window are same like that of offline log analysis, which are explained in Section 3.2.

Fig. 5. Time relation of our online event prediction approach.

As shown in Fig.5, the difference of the online event prediction method from our

previous offline one is that at the end of each time frame, we will generate new event

rules and update the event rule database. Finally, we use the updated event rules to

predict upcoming events. The implementation of our online event prediction system is

same like that in our previous work [13].

We find all the correlated events of coming log in the prediction time window. The

current state of system is determined according to these events, and the upcoming

correlated events are predicted based on the event rules.

5 Experiments

The target Hadoop system and its system logs in our experiment are described in

Section 3.2. In our experiment, we preprocess and analyze the logs between Oct 26,

2008 and Dec 31, 2008. The event rules generated according to the event logs are

used to online predict the event logs in Jan, 2009.

5.1 Metrics

We use the analysis time, the memory usage of the Log server node to evaluate the

overhead of our online log analysis system, and compare the precision rate, the recall

rate, and the average prediction time to evaluate our online event prediction system.

(1) Average analysis time

The compute complexity means the time and space utilization of algorithm,

including time complexity and space complexity. In this experiment, we use the

average analysis time and the average analysis time of time frames to evaluate the

compute complexity.

As shown in Fig.5, the analysis time is the time difference between the beginning

and ending timing points of event preprocessing, filtering and correlations mining.

 Average analysis time = the total analysis time / count of event logs

 Average analysis time of time frames = the total analysis time / count of time

frames

(2) Precision rate and Recall rate

The precision rate means the ratio of the correctly predicted events to all predicted

events. The recall rate means the ratio of correctly predicted events to all forthcoming

events.

 True Positive (TP) = the count of events which are correctly predicted

 False Positive (FP) = the count of events which are predicted but not

appeared in the time window

 Precision rate = TP / (TP + FP)

 Recall rate = True Positive/ count of all events

(3) Average prediction time

The prediction time is defined in Section 3.2. The prediction time is the time span

left for the autonomic system or system administrator to respond with the possible

upcoming failures.

5.2 The experimental methodology

Our online event correlation system includes two major components: Log agents

and Log server. Log agents in each data node collect logs and transfer logs to Log

server in almost real time. After Log server receives all the logs of a time frame, it

will preprocess and filter the log stream, and mine the new event rules.

In our experiment, we use an emulation methodology. Instead of log agents on

each data node sending logs to the log server, we use a program on another node to

replay the logs of the 260-nodes Hadoop cluster systems, and send the logs to Log

server in real time according to the timestamp of each event in logs.

5.3 Online log analysis

After log preprocessing and filtering, the event logs are used to analyze the failure

correlations.

When the 38432 logs between Oct 26, 2008 and Dec 31, 2008 are analyzed by our

Apriori-SO algorithm, the support threshold and the confidence threshold are

respectively set to 0.5 and 0.25 through comparing several runs of experiments with

different configurations.

The average analysis time and the analysis time of time frames are shown in Fig.6

with the varying time windows of the log buffer. We can see from Fig.6 that the

average analysis time of time frames increases with the sliding time window of the

log buffer, and the average analysis time decreases.

average

analysis

time

average

analysis

time of

time frame

0

5

10

15

20

25

30

35

40

45

50

10 20 30 45 60 90 120 180

Log buffer(min)

a
v
e
r
a
g
e

a
n
a
l
y
s
i
s

t
i
m
e
(
m
s
)

0

100

200

300

400

500

600

700

800

900

a
v
e
r
a
g
e

a
n
a
l
y
s
i
s

t
i
m
e

o
f

t
i
m
e

f
r
a
m
e
s
(
m
s
)

Fig. 6. Average analysis time and average analysis time of time frames V.S. time window

of Log buffer Tb (Sth=5, Cth=0.25).

The number of event rules is shown in Fig.7 with the varying time window of the

log buffer. We can observe in Fig.7 that the number of event rules also increases with

the size of log buffer. That is to say, the integrity of associate event rules is related to

the increase of the set of log buffer.

0

100

200

300

400

500

600

10 20 30 45 60 90 120 180

Log Buffer(min)

N
u
m
b
e
r

o
f

e
v
e
n
t

r
u
l
e
s

Fig. 7. Number of event rules V.S. Log buffer Tb (Sth=5, Cth=0.25).

5.4 Online event prediction

Together with the online log analysis, online event prediction is used to predict

upcoming events based on the event rules. Based on event rules generated with the

Apriori-SO algorithm, the logs are used to online predict events. In our experiment,

we online analyze the event logs between Oct, 2008 and Dec, 2008, and then use

these event rules to online predict the event logs in Jan, 2009.

When the support threshold and confidence threshold are respectively set to 5 and

0.25, and the prediction valid duration of online prediction is set as 60 minutes, the

result is shown in Fig.8.

Precision

rate(%)

Recall

rate(%)

0

10

20

30

40

50

60

70

80

90

100

10 20 30 45 60 90 120 180 240

Log Buffer(min)

P
r
e
c
i
s
i
o
n

r
a
t
e
(
%
)

0

5

10

15

20

25

30

35

40

45

50

R
e
c
a
l
l

r
a
t
e
(
%
)

Fig. 8. Precision rate and Recall rate of online prediction V.S. Log Buffer (Sth=5, Cth=0.25,

Prediction valid duration=60 minutes)

When the log buffer of online log analysis is set as 60 minutes, the support

threshold and confidence threshold are respectively set to 5 and 0.25. The result

shows that the number of event rules increases from 355 to 386.

In Fig.9 and Fig.10, we compare our online prediction approach with our previous

prediction approach based on the offline log analysis. Fig.9 presents the relationship

between the precision rate and the prediction valid duration for both online and offline

event prediction. Fig.10 presents the relationship between the recall rate and the

prediction valid duration for both online and offline event prediction.

0

10

20

30

40

50

60

70

10 20 30 40 50 60

Prediction valid duration(min)

P
r
e
c
i
s
i
o
n

r
a
t
e
(
%
)

Online

Offline

Fig. 9. Precision rate of online and offline prediction V.S. Prediction valid duration (log

buffer=60 minutes, Sth=5, Cth=0.25)

0

5

10

15

20

25

30

10 20 30 40 50 60

Prediction valid duration(min)

R
e
c
a
l
l

r
a
t
e
(
%
)

Online

Offline

Fig. 10. Recall rate of online and offline prediction V.S. Prediction valid duration (log

buffer=60 minutes, Sth=5, Cth=0.25)

It can be seen from Fig.9 and Fig.10 that the precision rate and recall rate of online

prediction are higher than offline prediction. It demonstrates that the online log

analysis can effectively represent the dynamic change of event rules.

0

100

200

300

400

500

600

700

800

900

1000

10 20 30 40 50 60

Prediction valid duration(min)

a
v
e
r
a
g
e

p
r
e
d
i
c
t
i
o
n

t
i
m
e
(
s
)

Online

Offline

Fig. 11. Average prediction time of online and offline prediction V.S. Prediction valid

duration (log buffer=60 minutes, Sth=5, Cth=0.25)

The relationship between the average prediction time and prediction valid duration

is shown in Fig.11. The difference between the average prediction time of online

prediction and that of offline prediction are small.

6 Conclusion

In this paper, we present an online log analysis approach to analyze event logs of

large-scale cluster systems. After online preprocessing and filtering, filtered logs are

used to mine failure correlations and generate associate event rules online. We

propose an improved Apriori associate rules algorithm named Apriori-SO to analyze

the event logs. The Apriori-SO algorithm uses the sliding time window model and

stores the log streams to log buffer, and analyze the log buffer to generate new rules

and update the existed rules. Based on the observation that most of events rules occur

in the same nodes or applications or have the same types, the Apriori-SO algorithm

use an event filtering policy to reduce the computing complexity.

The event rules generated by Apriori-SO algorithm can be used in online event

prediction. The experiments on a production cluster system in the Research Institution

of China Mobile show that our algorithms can achieve good precision rate in event

prediction.

In the near future, we will integrate path-based request tracing [22] and event

correlation mining approaches to diagnosis the failure events and performance

problems of Internet services applications. Much work will be done to analyze multi-

dimensional event logs in large-scale cluster systems [23].

Acknowledgments. This paper is supported by the NSFC projects (Grant No.

60703020 and Grant No. 60933003).

References

1. Sahoo, R.K., Sivasubramaniam, A., Squillante, M.S.: Failure data analysis of a large-scale

heterogeneous server environment. In: Proc. of DSN, 2004

2. Tierney, B., Johnston, W.: The NetLogger methodology for high performance distributed

systems performance analysis. In: Proc. of HPDC, 1998

3. Sahoo, R.K., Oliner, A.J.: Critical Event Prediction for Proactive Management in Large

scale Computer Clusters. In: Proc. of SIGKDD, 2003

4. Fu, S., Xu, C.: Exploring Event Correlation for Event prediction in Coalitions of Clusters.

In: Proc. of ICS, 2007

5. Fu, S., Xu, C.: Quantifying Temporal and Spatial Correlation of Failure Events for

Proactive Management. In: Proc. of SRDS, 2007

6. Gujrati, P., Li, Y., Lan, Z.: A Meta-Learning Failure Predictor for Blue Gene/L Systems.

In: Proc. of ICPP, 2007

7. Knight, J.C.: An Introduction To Computing System Dependability. In: Proc. of ICSE,

2004

8. Tang, D., Iyer, R.K.: Analysis and Modeling of Correlated Failures in Multicomputer

Systems. In: IEEE Trans. on Comput. 41, 5 (May. 1992), 567-577.

9. Koskinen, E., Jannotti, J.: BorderPatrol: Isolating Events for Precise Black-box Tracing. In:

Proc of Eurosys, 2008

10. Liang, Y., Zhang, Y.: BlueGene/L Failure Analysis and Prediction Models. In: Proc. of

DSN, 2006

11. Hacker, T.J., Romero, F., Carothers, C.D.: An analysis of clustered failures on large

supercomputing systems. In: Journal of Parallel and Distributed Computing. 69, 7 (Jul.

2009), 652-665.

12. Oliner, A.J., Aiken, A., Stearley, J.: Alert Detection in Logs. In: Proc. of ICDM, 2008

13. Zhou, W., Zhan, J., Meng, D., Xu, D., Zhang, Z.:LogMaster: Mining Event Correlations in

Logs of Large-scale Cluster Systems. In: CoRR abs/1003.0951: (2010)

14. Jiang, N., Gruenwald, L.: Research Issues in Data Stream Association Rule Mining, In:

ACM SIGMOD Record, Vol. 35, No. 1, Mar. 2006

15. http://en.wikipedia.org/wiki/Hadoop

16. Salfner, F., Tschirpke, S.: Error Log Processing for Accurate Event prediction. In:

USENIX workshop on the analysis of System logs (WASL), 2008

17. Lou, J.G., FU, Q., Wang, Y., Li, J.: Mining Dependency in Distributed Systems through

Unstructured Logs Analysis, In: USENIX workshop on WASL, 2009

18. Zhang, R., Cope, E., Heusler, L., Cheng. F.: A Bayesian Network Approach to Modeling

IT Service Availability using System Logs. In: USENIX workshop on WASL, 2009

19. Tang, D., Iyer, R.K.: Analysis and Modeling of Correlated Failures in Multicomputer

Systems. In: IEEE Trans. on Comput. 41, 5 (May. 1992), 567-577.

20. Oliner, A., Stearley, J.: What Supercomputers Say: A Study of Five System Logs. In: Proc

of DSN, 2005

21. Rouillard, J.P.: Real-time log file analysis using the Simple Event Correlator (SEC). In:

Proc of LISA, 2004

22. Zhang, Z., Zhan, J.:Precise request tracing and performance debugging of multi-tier

services of black boxes. In: Proc of DSN, 2009.

23. Zhou, W., Zhan, J.: Multidimensional Analysis of System Logs in Large-scale Cluster

Systems. In: Proc of DSN (FastAbstract), 2008.

