Storage Device Performance Prediction with Selective Bagging Classification and Regression Tree

Abstract : Storage device performance prediction is a key element of self-managed storage systems and application planning tasks, such as data assignment and configuration. Based on bagging ensemble, we proposed an algorithm named selective bagging classification and regression tree (SBCART) to model storage device performance. In addition, we consider the caching effect as a feature in workload characterization. Experiments indicate that caching effect added in feature vector can substantially improve prediction accuracy and SBCART is more precise and more stable compared to CART.
Type de document :
Communication dans un congrès
Chen Ding; Zhiyuan Shao; Ran Zheng. IFIP International Conference on Network and Parallel Computing (NPC), Sep 2010, Zhengzhou, China. Springer, Lecture Notes in Computer Science, LNCS-6289, pp.121-133, 2010, Network and Parallel Computing. 〈10.1007/978-3-642-15672-4_11〉
Liste complète des métadonnées

Littérature citée [23 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01054984
Contributeur : Hal Ifip <>
Soumis le : lundi 11 août 2014 - 09:02:37
Dernière modification le : vendredi 11 août 2017 - 17:44:16
Document(s) archivé(s) le : mercredi 26 novembre 2014 - 21:40:36

Fichier

llncs.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Lei Zhang, Guiquan Liu, Xuechen Zhang, Song Jiang, Enhong Chen. Storage Device Performance Prediction with Selective Bagging Classification and Regression Tree. Chen Ding; Zhiyuan Shao; Ran Zheng. IFIP International Conference on Network and Parallel Computing (NPC), Sep 2010, Zhengzhou, China. Springer, Lecture Notes in Computer Science, LNCS-6289, pp.121-133, 2010, Network and Parallel Computing. 〈10.1007/978-3-642-15672-4_11〉. 〈hal-01054984〉

Partager

Métriques

Consultations de la notice

71

Téléchargements de fichiers

156