N

N

Automatically Detecting Opportunities for Web Service
Descriptions Improvement

Juan Manuel Rodriguez, Marco Crasso, Alejandro Zunino, Marcelo Campo

» To cite this version:

Juan Manuel Rodriguez, Marco Crasso, Alejandro Zunino, Marcelo Campo. Automatically De-
tecting Opportunities for Web Service Descriptions Improvement. 10th IFIP WG 6.11 Conference
on e-Business, e-Services, and e-Society (I3E), Nov 2010, Buenos Aires, Argentina. pp.139-150,
10.1007/978-3-642-16283-1_18 . hal-01055025

HAL Id: hal-01055025
https://inria.hal.science/hal-01055025

Submitted on 11 Aug 2014

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License


https://inria.hal.science/hal-01055025
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Automatically detecting opportunities for Web Service
descriptions improvement

Juan Manuel Rodriguez, Marco Crasso, Alejandro Zunino celarCampo

ISISTAN Research Institute. UNICEN University. Campus \iémsitario, Tandil (B7001BBO),
Buenos Aires, Argentina. Tek:54 (2293) 439682 ext. 35. Fax.54 (2293) 439683
Consejo Nacional de Investigaciones Cientificas y TEc{iC&NICET)

Abstract. Mostly e-business ana-applications rely on the Service Oriented
Computing paradigm and its most popular implementatiometg Web Ser-
vices. When properly implemented and described, Web Szswian be dynami-
cally discovered and reused using Internet technologieshipg interoperability
to unprecedented levels. However, poorly described Webi&srare rather dif-
ficult to be discovered, understood, and reused. This papeepts heuristics for
automatically detecting common pitfalls that should beid®d when creating
Web Service descriptions. Experimental results with c.ré@l-world Web Ser-
vices, empirically show the feasibility of the proposed tigtics.

Keywords: Web Service modeling, Web Service discoverability antigras

1 Introduction

The success encountered by the Internet encourages ipraat, companies and gov-
ernments to create software that utilizes information @ndises that third-parties have
made public in the Web. This, besides encouraging the akméoned actors tofter
their information and services in the same way, spreadsantew kind of software,
namelye-applicationsg-business, anéd-government [1]. Nowadays, tH&ervice Ori-
ented ComputingSOC) paradigm [2] is used for developing this kind of softeva

With SOC, software development involves a service proyidéo dfers services
and advertises them in a public registry, and service corssiiwho use such a registry
to find the services that they need [3]. Using open standatdd) as SOAP, HTTP,
and XML, to implement the SOC paradigm is by now commonplacthé software
industry because these standards allow the integratiomfiiefreint pieces of software
independently of their platform and location. Basicallgyiders describe their services
using Web Service Description Language (WSDL), which is &l based language,
and advertise them using Universal Description, Discovrg Integration (UDDI),
which uses XML for representing services meta-data and St@ARuerying it. The
term Web Services refers to these standards that supporge8@E€s the Web [4].

SOC and Web Services have been broadly embraced by the softvdaistry. The
ever-growing number of publicly available services repres “either more freedom
or more chaos for service consumers” [5], mainly becausé@fliimited search ca-
pabilities of UDDI, the incorrect usage of standards to dbecWeb Services, and
that they do not consider the semantics of services in andéixahd non ambiguous



way [6]. Several registry enhancements have been proposetptove the experience
of service consumers. The approach to service discovetypdses on exploiting ev-
ery possible piece of information conveyed in standardisemescriptions, has shown
favorable outcomes [7]. This approach bases on the factihah WSDL documents
are well-written the signatures and associated commentiseaf offered operations,
convey keywords relevant to index the services [7]. Weittem WSDL documents are
essential for not only such approach, but also service coasubecause if they do not
understand what a service does, they would not select theeseldnfortunately, de-
spite such importance and Foster’s words “Web Serviceslitdeevalue if other cannot
discover, access, and make sense of them” [8], it seemsritngtiprs tend not to care
about Web Services discoverability and understandajaliyointed by [9,10,11].

In our previous work [10], we introduced a catalog of WSDLséd Web Services
discoverability anti-patterns. Besides measuring theaichpf each anti-pattern on dis-
covery, the study assesses the implications of anti-petten users’ ability to make
sense of WSDL documents. The catalog consists of eightpatiterns having a name,
a problem description, and a soundly refactor procedureveder the results of the
study motivate anti-patterns refactoring, manually logifor an anti-pattern in WSDL
documents might be a time consuming and complex task. Thisspaper presents
heuristics to automatically detect the anti-patterns efdéitalog. These heuristics have
been experimentally validated with a real-world data-stedwing an averaged accuracy
of 985%. Therefore, the main contribution of this paper is:

— the definition and validation of novel heuristics for autdivelly detecting anti-
patterns that already have been proven to be opportunitiesiproving the dis-
coverability and understandability of Web Services in [10]

The rest of the paper is organized as follows: Sect. 2 explhim essential characteris-
tics of the WSDL, the service discovery process, and the Wehi&s discoverability
anti-patterns, Sect. 3 explains the proposed heuristic#e 8ect. 4 reports conducted
experiments, finally Sect. 5 presents conclusions and aypities of future research.

2 Background

WSDL is an XML-based language that allows providers to dbsdhe service func-
tionality as a set oport-types A port-type arranges fierentoperationswhose invo-
cation is based on exchangingessagesone message with input data, other with the
result, and another with error information, optionallyrPtypes, operations and mes-
sages, must be named with unique names. Messages consststhat are arranged
according to specific data-types defined using the XML Scheefaition (XSD) lan-
guage. XSD fers constructors for defining simple types (e.g., integdrsaring), and
more elaborate mechanisms for defining complex elements-pe definitions can
be put into a WSDL document or into a separate file and impdread any WSDL
document afterward. The grammar of the WSian be summarized as follows:

! Note that “?” means optional and “*” means none or many.



<documentation .... />7?
<types>?
<documentation .... />?
<schema .... />%*
</types>
<message name="nmtoken">*
<documentation .... />?
<part name="nmtoken" element="gname"? type="gname"?/>*
</message>
<portType name="nmtoken">*
<documentation .... />7?
<operation name="nmtoken">*
<documentation .... />?
<input name="nmtoken"? message="qgname">?
<documentation .... />?
</input>
<output name="nmtoken"? message="gname">?
<documentation .... />?
</output>
<fault name="nmtoken" message="qname">*
<documentation .... />?
</fault>
</operation>
</portType>

UDDI? was originally defined as the discovery protocol of Web Smrsi However,
UDDI has been proven to be an firective discovery method for large registries because
it is a keyword based discovery method [12]. As a result tworaaches to discovery
have been taken, the first one relies on an extended WSDL lud@ontology based
descriptions of the service. Although this approach allaw®matic service discovery,
the industry has not adopted because the hffgrterequired for implementing it [13].
The second direction is applying information retrieval)(tBchniques to WSDL docu-
ments for allowing search Web Service [7]. The main stregtsing IR is that there
is no need of modifying existent WSDL documents. Howevas, ithalso a drawback
because many of those documents are not well-written.

Although the importance of well-designed WSDL documentliean identified as
a central concern in Web Service reuse [14,15fedent studies have pointed out the
existence of widespread problems in documentation [16fing [11] and interface
design [9,17] in real-life WSDL documents.

In [10], we have explicitly addressed the quality of WSDL doeents from the
perspective of a discoverer, pursuing recurrent probléeisattempt against the under-
standability and discoverability of services. To do thig, ave studied publicly avail-
able WSDL documents looking for common problems. As a rethdt study presents
a catalog of bad practices that frequently occur in the aealycorpus, along with
hints about how to detect problem symptoms, and refactgundelines to solve them.
Specifically, each observed bad practice has been desdnlzdeneral way that in-
cludes a description of: the problem, its solution, and kstitative example, thus we
refer to the catalog as a catalog of Web Services discouiyadnti-patterng18].

Table 1 summarizes the identified anti-patterns. The “Spmgt column describes
the bad practice associated with an anti-pattern. The aohamed “Manifests” presents
a classification based on how an anti-pattern can be detetdidpattern manifesta-
tion can take three valuegvident Not immediately apparenandPresent in service

2UDDI http://uddi.xml.org/



Table 1: Catalog of Web Service discoverability anti-paise

Anti-pattern Symptoms Manifest

Occurs when the data-type definitions are placed in WSDL .
Enclosed data model ) Evident
documents rather than in separate XSD ones.

Redundant port-types Occurs when port-typfisrahe same set of operations. Evident

Occurs when many data-types for representing the sametsljec .
Redundant data models ) o Evident
the problem domain coexist in a WSDL document.

Whatever types Occurs when a data-type represents anyt objbe domain. Evident

Inappropriate or lacking Occurs when (1) a WSDL document has no comments, or (1) Evident, or (2) Not
comments (2) comments are inappropriate and not explanatory. immediately apparent

Low cohesive operations . . »
. Occurs when port-types have weak semantic cohesion. Noediately apparent
in the same port-type

. Occurs when ambiguous or meaningless names are used for i i
Ambiguous names ) ) Not immediately apparent
denoting the main elements of a WSDL document.

Occurs when output messages are used to notify serviceerror

Undercover fault ) . (1) Not immediately apparent,
. . o Sometimes (1) whatever types are returned and operatiomeois . .
information within K i . or (2) Present in service

suggest anti-pattern occurrence. Otherwise (2) it is rezegdo ] .
standard messages implementation

analyze service implementation.

implementationAn anti-pattern isEvidentif it can be detected by analyzing only the
structure, or syntax of the WSDL documeNbt immediately apparemheans that de-
tecting the anti-pattern requires a semantic analysis dskirally, Present in service
implementatiomanti-patterns may not show themselves in the WSDL docurtterg re-
quiring the execution of the associated service to be delethis classification drives
the approach to detect an anti-pattern, as will be explaimeext section. It is worth
noting that two anti-patterns are classified in many caiegpand that the proposed
heuristics detect them when they manifest according te fife¢lassification.

3 Automatic discoverability anti-pattern detection

Our anti-pattern detection approach bases on an increhpeat®ss, in which a WSDL
document is passed through eighffelient heuristics. Each heuristic deals with the
detection of a particular anti-pattern. The idea of havirdjvidual detection heuristics
stems from the fact that anti-pattern occurrences are riyitndependent [10]. In other
words, the occurrence of one anti-pattern does not implpticerrence of another one.
Below, the heuristics are discussed regarding the way e#tcipattern manifests.

3.1 Evident anti-patterns

The detection of Evident anti-patterns is based on rulegwdre applied to the WSDL
document grammar, because the manifestation of thespaitdirns is syntactical.



Algorithm 1 Heuristic for detectindqrepeated data model anti-pattern

1: function rebunpant(element, elemeng) > The first time recives two data definitions
2: if IHaveSameArTrIBUTES(€lement, elemen?) then
3: return false
4: end if
5: chidrenl « GerCuiLbren(element)
6: chidrer? « GerCuiLbren(elemen?)
7 if Size(childrenl)! = Size(childrer?) then
8: return false
9: end if
10: for i « 0;i < Sizg(childrenl);i + + do
11: childl « children[i]
12: child2 « childrer?[i]
13: if Irepunpant(childl, child2) then
14: return false
15: end if
16: end for
17: return true

18: end function

To detectEnclosed data modeainti-pattern, it is necessary to know if the data-
types exchanged by service operations are defined in the Wd®bluiment or imported
from some where else. To do this, our heuristic checks if<types> tag is present
in a WSDL document. If it is not present, the data model is refingéd in the WSDL
document; therefore, the anti-pattern is not presentéustwhen the WSDL document
contains thectypes> tag, the heuristic analyzes whether the tag is empty or itacos
one or morecschema> tags. If the<types> tag is empty, it again means that no type is
defined, which suggests that the anti-pattern is not pre€enthe other hand, if the
<types> tag has<schema> tags defined, it is necessary to check eagthema> tag. If
all <schema> tags are empty, the anti-pattern is not present, otherwvis@iesent.

The detection oRedundant port-typesnti-pattern requires to revise if a port-type is
defined several times in the same WSDL document. Usuallygpart another invoca-
tion method for a service, providers tend to repeat a pgréstiput using data-types spe-
cially designed for the new invocation method [10]. Congaly, it is not possible to
detect anti-pattern occurrences by looking for exact magchetween two port-types.
Therefore, the heuristic analyzes if two port-types haeesdome number of operations
and if they have the same names, skipping any message siynilaecks.

Redundant data modehti-pattern manifestation isféérent fromRedundant port-
typeanti-pattern manifestation. WitRedundant data modahti-pattern, the names of
the elements that describe the data-type are likely to aydng not the structure of the
data-type. Thus, the detection of this anti-pattern ingslgomparing the structure of
each defined data-type. Algorithm 1 shows how two data-tgfieitions are compared.

The two commonest forms in which thghatever typanti-pattern manifests itself
are: (1) when a data-type is defined using the XSD primitipetianyType”, (2) when
a data-type definition includes thany> tag. Both cases allow developers to leave a
data-type part undefined because any valid XML content candseted afterward in



such an undefined part. Therefore, the corresponding tiewaiglyzes if<any> tag is
present, or some tag have “anyType” as a value of its “typeperty.

Finally, another heuristic checks that that all operatiitiin a WSDL document
have associated thelocumentation> tag and its content is not empty, otherwise an
evident occurrence dhappropriate or lacking commengsiti-pattern is present.

3.2 Notimmediately apparent anti-patterns

Not immediately apparent anti-patterns cannot be detdnesyntactically analyzing
the WSDL grammar. Instead, their detection requires amaythe semantics of com-
ments and names present in WSDL documents [10]. Therefeautes for detecting
anti-patterns of this group are more complex than thoseeoptkvious section.

In order to detect if thé.ow cohesive operations in the same port-tgpé-pattern
occurs in a service description, it is necessary to veridy port-type operations belong
to the same domain. Broadly, the heuristic aims to deducddh®@ain of each individ-
ual operation, and then compares deduced domains lookingifmatches. Since the
information available of the operations are their namesjroents, messages and data-
types, which are textual information, our heuristic reduttee problem of classifying
operations according to their domain to the well-known jeobof classifying text.

Current implementation of the heuristic employs a variatdd Rocchio classifier,
called Rocchio TF-IDF, because a previous work [19] has englly shown that Roc-
chio TF-IDF outperformed other classifiers for the Web Smrsicontext. Rocchio TF-
IDF represents textual information as vectors, in whicthaimension stands for a term
and its magnitude is the weight of the term related with tie téaving represented all
the textual information of a domain as vectors, the averagov, called centroid, is
built for representing the domain. Then, the domain of arrafge is deduced by rep-
resenting it as a vector and comparing it to each domain @ientfinally, the domain
of the most similar average vector is returned as being theaitoof that operation. For
the sake of conciseness, the reader asking for deep exiplamand details about gath-
ering textual information from WSDL documents, represenit as vectors, centroid
construction and similarity calculations should refer18]|

Using Rocchio TF-IDF, operations can be easily classifiatliaa port-type con-
tains operations that belong toffgirent domains the anti-pattern is considered to be
present. The main disadvantages of using Rocchio TF-IDRleethe classifier is
only able to classify operations in known domains, and neguan expert to classify
a training-set of operations according with their domaimug, for the experiments we
employed a corpus of WSDL documents that have been preyiolassified.

TheAmbiguous namemnti-pattern is another Not immediately apparent antigpat
which deals with non-explanatory WSDL element names. Tlsedtep to detect nam-
ing problems in a WSDL document s to check whether the leafimy name is neither
too short nor too long. Thus, the associated heuristic chiéthe length of any name is
between a fixed range of characters, otherwise the name s&devad as an occurrence
of the anti-pattern. For the experiments, we set the ranfZ30] characters.

Second, several words have been identified to be relatedneitkexplanatory or
too general names [11]. The unrecommended wordglzireg, class, param, arg, obj,
some, execute, return, body, foo, http, soap, result, jrqauput, in, outA name that



has any of these words probably is too general; thereforeafhae contains one of these
words, the corresponding heuristic detects it as an ambigname.

Third, each name should have an adequate grammaticalisgudhe name of an
operation should be in the formverb> “+” {<noun>|<noun phrase>} because an op-
eration is an action, but in the case of exchanged data (engssage part), its name
should be g<noun>|<noun phrase>} because it represents a concept [10].

To grammatically analyze the structure of a name, our héu@pplies a proba-
bilistic context free grammar parser [20] to operation aad pames. With this kind of
parsers, a sentence is analyzed and associated with ratdetin one or more parsing
trees as in traditional context free grammar, but each ratean independent proba-
bility. Therefore, it is possible to calculate the most @bly parsing tree for a given
sentence by multiplying the probability of all the rules el derived parsing tree.

RO‘OT

RO‘OT RO‘OT S
Simple declarative Direct question excluding word — T
RooT RooT p or word-phase (SQ) RoOT NP VP
| | clause (S) P! |
P T~ Fragment | | N
Noun phrase NP VP Verbnon 3rd  yp
NP) NP Verb phrase o | A (FRAG) | prP ps.sing. (VBP)
| PN (VP) | Personal pronoun N\ I ’ "
Noun e | (PRP) VB NP | NP NP create VB NP
ou Adietive N | verb3rdps. NN | | \ [ | \
(NN) (J‘J) ‘ sing,‘(VBZ) | it buy NN P'TP N‘N send NN
name first name uses cache c‘ar it car ticLet
name firstName usesCache buyCar car createSendTicket
(a) Parsing message part names (b) Parsing operation names

Fig. 1: Parsing tree examples.

The heuristic to analyze a message name is to check if thimgarse derived by the
parser has no verb tags. For example, Fig. 1a depicts thimgarse of three message
names: “name”, "firstName”, and “usesCache”. The first ardisd names are correct,
because their parsing trees do not contain verbs. Howé&ename “usesCache”, starts
with a verb so it represents an action and thus it is not correc

When analyzing an operation name, the heuristic adds tofkeation name the
word “it” at the beginning of the name to indicate the nourt thahould be missing
in the name of an operation. For instance, if the operatiommed “buyCar”, the sen-
tence analyzed by the parser is “it buy car”. Although theesece is not grammatically
correct, it is closed enough to the correct sentence bedswdrg probabilistic rules
makes the parser able to handle malformed sentences [2&h, Dlar heuristic counts
the number of verbs in the parsing tree. If the number of visrdgferent from one, the
Ambiguous namanti-pattern is detected. Figure 1b represents parsieg fa three
different operation names with the “it” pronoun added as expthabove. The first
name, which is “buyCar”, is correct because it gives the ithed the operation per-
forms one and only one action. In contrast, the second naimehvs “car”, is a noun
then is incorrect because the name has not semantics of nhaperation does. Fi-
nally, the third operation name, which is “createSendTigke also incorrect because
it has two verbs meaning that the operation actually perédmwo actions.



Finally, the last heuristic aims at detecting Not immediatgparent occurrences
of Undercover fault information within standard messagas-pattern. Commonly, this
anti-pattern has footprints in WSDL documents, but somesiiih requires to analyze
service implementation. Our heuristic only detects this-pattern when is the first
case. To do this, the heuristic verifies whether an operdtama<fault> message
defined that means that the errors are handled in the coreetien[10]. Consequently,
the presence of afault> message is considered enough evidence that the operation
presents no symptom of the anti-pattern. If this not the ,ctime heuristic looks for
an occurrence of the Whatever type anti-pattern in the augnd keywords in the
operation comments that indicate the presence of the attgyp. The set of keywords
is: fault, error, fail, overflow, exception, stackTrace

4 Experimental evaluation

Previous section describes the proposed heuristics fonmtically detecting the dis-
coverability anti-patterns introduced by [10]. This sentidescribes the experiments
that have been conducted to evaluate the detecffent&veness of these heuristics.

The followed evaluation methodology involves manually lgpag each WSDL
document to identify the anti-patterns it has, peer-reingwnanual results (at least
three diferent people reviewed each WSDL document), automaticalyyaing the
WSDL document using the proposed heuristics, and finallypaning both manual and
automatic results. These results are organized per attérpain which if a WSDL doc-
ument has the anti-pattern it is classified as “Positivéieowise it is classified as “Neg-
ative”. When the manual classification for a WSDL documesetjgal to the automatic
one, it means that the heuristic accurately operates fodtiamiment. Achieved results
are shown using a confusion matrix. Each row of the matrixesgnts the number of
WSDL documents that were automatically classified usindntheistic associated with
a particular anti-pattern. The columns of the matrix shomuoa classifications, i.e. the
number of WSDL documents that has the anti-pattern actually

The described methodology was followed using the datafs89® WSDL docu-
ments that it is described in [10]. This data’sethich was gathered by Hess et al. [21],
has been selected because it is an snapshot of publichablailVeb Service on Inter-
net. Once each heuristic was fed with the data-set and ittsemputed, we built the
confusion matrixes. Then, we assessed the accuracy, assldasitivgnegative rates
for each matrix. Table 2 shows the confusion matrixes.

The accuracy of each heuristic was calculated as the numblassification match-
ing over the total of analyzed WSDL documents. For instatieeaccuracy of the Re-
dundant data model heuristic wgga1% . = 0.987. The heuristic for detecting Low
cohesive operations within the same port-type anti-patdehieved the lowest accu-
racy: Q775. This could be caused by errors that the classifier intted. Nevertheless,
the averaged accuracy for all heuristics we&258.

The false positive rate is the proportion of WSDL documemas & heuristic wrongly
labels them as having the corresponding anti-pattern. &stme time, the false neg-
ative rate is the proportion of WSDL documents that a haangtongly labels as not

3 Data-sethttp://www.andreas-hess.info/projects/annotator/index.html



Table 2: Confusion matrixes for the detection of anti-patie

. . ) Manual detection results
Automatic detection results per anti-pattern

Negative Positive
Enclosed data model Neg_aFlve 116 6
Positive 0 270
Negative 161 4
Redundant port-types g_ -
Positive 0 227
Negative 221 2
Redundant data models g_ .
Positive 3 166
Negative 339 0
Whatever types g‘ .
Positive 3 50
) Negative 135 0
Lacking comments g‘ .
Positive 0 257
. ) . Negative 272 10
Low cohesive operations in the same port-type i
Positive 78 32
) Negati 67 0
Ambiguous names egéilve
Positive 9 316
Undercover fault information within standard Negative 351 3
messages Positive 4 34

having the corresponding anti-pattern. A false negatiteeeguals to 1 would mean that
a detection heuristic missed all anti-pattern occurrereasthese rates, the lower the
achieved values the better the detectiffieciveness. The averaged false positive rate
was 0036, and the averaged false negative rate was2

We individually analyzed each WSDL document that was wrpetdssified by the
heuristics. Afterward, we detected that the reason beh@hdorrect classifications
was that those WSDL documents adhere to the 2001 WSDL sthndhereas the im-
plementation of the heuristics depends on the 1999 stantlaedefore, 16 mismatches
were caused by currentimplementation of the heuristicsatthy a heuristic itself.

5 Conclusions and Future Work

Many Web Service problems for being discovered and re-usaa, been recognized as
having their roots in WSDL discoverability anti-patterd®]. This paper presents novel
heuristics for detecting these anti-patterns. Proposedsiies have been employed for
analyzing a corpus of real-world Web Services, which hachbreanually analyzed.
Reported experiments show that the averaged accuracy bétirestics was @58, and
the false positive and false negative averaged rate9860and 052, respectively. All
in all, the proposed heuristics represent an advance inréfagion of Web Services that
are easier to be understood and discovered, which by theassgymbolize the basic



blocks fore-applications relying on the SOC paradigm or the new waveeofise-
oriented software systems, such as Cloud Computing [22|S%a PaaS [23].

The anti-pattern detector can minimized the impact of theroonest bad practice
by helping developers to detect potential problems in theivices before they are
made available. In addition, Web Service registries mayhesanti-pattern detector for
informing service developers about possible problemséir tervices, so developers
can be aware of those problems for avoiding them in futursioas of the services.

More experiments should be done in the future, since therteghoesults can not
be generalized, in particular those related to Not immedliagpparent anti-patterns. In
this sense, we are planning to employ the heuristics witle@y published repository
of real Web Services [24]. Besides, this work will be extethtteincorporate a heuristic
for analyzing the descriptiveness of comments present iDW&cuments. Currently,
we are evaluating a heuristic that combines WordNet, artreleic lexical database,
and a natural language parser. Preliminary results areueaging.

Another line of future research involves the synchronmatietween changes in
WSDL documents and service implementations, because iamthe identified anti-
patterns from a service description may imply changes iuttterlying software. Fur-
thermore, some version support technique is necessarlpt @nsumers that use the
old WSDL document version to continue using the servicel tindy migrate to the
improved WSDL document [25].

Acknowledgments

We thank Pablo Inchausti and Daniel Molero for helping usriplement the heuristics.
Also, thanks to ANPCyT for supporting this research throggimts PAE-PICT 2007-
02311 and PAE-PICT 2007-02312.

References

1. Adegboyega Ojo Tomasz Janowski and Elsa Estevez. Raygtbgenent of electronic pub-
lic services: a case study in electronic licensing serviceProceedings of the 8th annual
international conference on Digital government reseais(O’07), pages 292—-293, 2007.

2. Martin Bichler and Kwei-Jay Lin. Service-Oriented Cortipg. Computey 39(3):99-101,
2006.

3. Michael P. Papazoglou and Willem-Jan Van Den Heuvel. i8emriented design and devel-
opment methodologyinternational Journal of Web Engineering and Technoldf#):412—
442, 2006.

4. Paul W. P. J. Grefen, Heiko Ludwig, Asit Dan, and Samuil dlpg. An analysis of web
services support for dynamic business process outsourdirigrmation & Software Tech-
nology, 48(11):1115-1134, 2006.

5. Jen-Yao Chung, Kwei-Jay Lin, and Richard G. Mathieu. Gedgors’ introduction: Web
services computing—advancing software interoperabiitymputey 36(10):35-37, 2003.

6. Cristian Mateos, Marco Crasso, Alejandro Zunino, andddlar Campo. Adding semantic
Web Services matching and discovery support to the Movilagfgrm. In Proceedings of
the IFIP 19th World Computer Congress (IFIP'Q&plume 217 ofFIP, pages 51-60, 2006.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

. Marco Crasso, Alejandro Zunino, and Marcelo Campo. Caimgiquery-by-example and

query expansion for simplifying Web Service discovelyformation Systems Frontiers
press, 2009.

. lan Foster. Service-oriented scien8eience308(5723):814-817, 2005.
. Jianchun Fan and Subbarao Kambhampati. A snapshot aEpWb Services SIGMOD

Rec, 34(1):24-32, 2005.

Juan Manuel Rodriguez, Marco Crasso, Alejandro Zurand,Marcelo Campo. Improving
Web Service descriptions foffective service discovergcience of Computer Programming
in press, 2010.

M. Brian Blake and Michael F. Nowlan. Taming Web Servitem the wild. IEEE Internet
Computing 12(5):62—-69, 2008.

John Garofalakis, Yannis Panagis, Evangelos Sakkopoaihd Athanasios Tsakalidis. Con-
temporary Web Service Discovery Mechanisdmurnal of Web Engineering(3):265—-290,
2006.

Rob McCool. Rethinking the Semantic Web, partIEEEE Internet Computingl0(1):96,
93-95, 2006.

Baoli Dong, Guoning Qi, Xinjian Gu, and Xiuting Wei. Wedrgice-oriented manufacturing
resource applications for networked product developmi&dtanced Engineering Informat-
ics, 22(3):282 — 295, 2008. Collaborative Design and Manufaugu

Jack Beaton Brad A. Myers fJeStylos Ralf Ehret Jan Karstens Arkin Efeoglu Sae
Young Jeong, Yingyu Xie and Daniela K. Busgend-User Developmenthapter Improv-
ing Documentation for eSOA APIs through User Studies, p&§ed.05. Lecture Notes in
Computer Science. Springer Berlikleidelberg, 2009.

J. Pasley. Avoid XML schema wildcards for Web Serviceiifatces. Internet Computing,
IEEE, 10(3):72—-79, May-June 2006.

Jack Beaton, Sae Young Jeong, Yingyu Xigfrdg Jack, and Brad A. Myers. Usability
challenges for enterprise service-oriented architecNitks. In|IEEE Symposium on Visual
Languages and Human-Centric Computing /NMCC), pages 193-196, Sept. 2008.
William J. Brown, Raphael C. Malveau, Hays W. McCormiekd Thomas J. Mowbray.
AntiPatterns: Refactoring Software, Architectures, amdj€ts in Crisis John Wiley, 1998.
Marco Crasso, Alejandro Zunino, and Marcelo Campo. AWSCapproach to Web Service
classification based on machine learning techniqResista Iberoamericana de Inteligencia
Artificial, 37(12):25-36, 2008.

Dan Klein and Christopher D. Manning. Accurate unlelideal parsing. InProceedings
of the 41st Annual Meeting on Association for Computatidniaguistics (ACL'03) pages
423-430, 2003.

Andreas HeR, Eddie Johnston, and Nicholas KushmericlSSAM: A tool for semi-
automatically annotating semantic Web Services. In Sh&iMcllraith, Dimitris Plex-
ousakis, and Frank van Harmelen, editdrgernational Semantic Web Conferene®l-
ume 3298 of_ecture Notes in Computer Science (LNGiges 320-334, Hiroshima, Japan,
November 7-11 2004. Springer.

Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, 3aBneberg, and Ivona Brandic.
Cloud computing and emerging it platforms: Vision, hyped aeality for delivering com-
puting as the 5th utilityFuture Generation Computer Systerd§(6):599-616, 2009.

Sonja Zaplata and Winfried Lamersdorf. Towards mohiteess as a service. Rroceed-
ings of 25th ACM Symposium On Applied Computing (SACH#&)es 372-379, 3 2010.
Eyhab Al-Masri; Qusay H. Mahmoud. Qos-based discovedyranking of Web Services.
In Proceedings of the 16th International Conference on Cosrgdbmmunications and Net-
works (ICCCN’07) pages 529-534, 2007.



25. Matjaz B. Juric, Ana Sasa, Bostjan Brumen, and lvan RozMésDL and UDDI extensions
for version support in Web Serviceslournal of Systems and Software Sl: Architectural
Decisions and Rational&2(8):1326—-1343, 2009.



