Detecting Temporal Pattern and Cluster Changes in Social Networks: A Study Focusing UK Cattle Movement Database

Abstract : Temporal Data Mining is directed at the identification of knowledge that has some temporal dimension. This paper reports on work conducted to identify temporal frequent patterns in social network data. The focus for the work is the cattle movement database in operation in Great Britain, which can be interpreted as a social network with additional spatial and temporal information. The paper firstly proposes a trend mining framework for identifying frequent pattern trends. Experiments using this framework demonstrate that in many cases a large number of patterns may be produced, and consequently the analysis of the end result is inhibited. To assist in the analysis of the identified trends this paper secondly proposes a trend clustering approach, founded on the concept of Self Organizing Maps (SOMs), to group similar trends and to compare such groups. A distance function is used to compare and analyze the changes in clusters with respect to time.
Type de document :
Communication dans un congrès
Zhongzhi Shi; Sunil Vadera; Agnar Aamodt; David Leake. 6th IFIP TC 12 International Conference on Intelligent Information Processing (IIP), Oct 2010, Manchester, United Kingdom. Springer, IFIP Advances in Information and Communication Technology, AICT-340, pp.163-172, 2010, Intelligent Information Processing V. 〈10.1007/978-3-642-16327-2_22〉
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01055061
Contributeur : Hal Ifip <>
Soumis le : lundi 11 août 2014 - 12:56:54
Dernière modification le : lundi 15 janvier 2018 - 11:43:26
Document(s) archivé(s) le : mercredi 26 novembre 2014 - 21:56:58

Fichier

Detecting_Temporal_Pattern_and...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Puteri N. E. Nohuddin, Frans Coenen, Rob Christley, Christian Setzkorn. Detecting Temporal Pattern and Cluster Changes in Social Networks: A Study Focusing UK Cattle Movement Database. Zhongzhi Shi; Sunil Vadera; Agnar Aamodt; David Leake. 6th IFIP TC 12 International Conference on Intelligent Information Processing (IIP), Oct 2010, Manchester, United Kingdom. Springer, IFIP Advances in Information and Communication Technology, AICT-340, pp.163-172, 2010, Intelligent Information Processing V. 〈10.1007/978-3-642-16327-2_22〉. 〈hal-01055061〉

Partager

Métriques

Consultations de la notice

189

Téléchargements de fichiers

197