Associated Clustering and Classification Method for Electric Power Load Forecasting

Abstract : In the process of power load forecasting, electricity experts always divide the forecasting situation into several categories, and the same category uses the same forecasting model. There exists such a situation that some load curve which domain experts consider belonging to the same category has shown the different characteristics, but some load curve which belongs to different category seems very similar, and usually able to gather into a category by clustering. For this problem, the definition of associated matrix was proposed in this paper, and based on this conception the associated clustering-classification algorithm was proposed, We applied this algorithm to data sample classification for power load prediction, the experiment showed that the classification results obtained by our method were more reliable.
Type de document :
Communication dans un congrès
Zhongzhi Shi; Sunil Vadera; Agnar Aamodt; David Leake. 6th IFIP TC 12 International Conference on Intelligent Information Processing (IIP), Oct 2010, Manchester, United Kingdom. Springer, IFIP Advances in Information and Communication Technology, AICT-340, pp.112-121, 2010, Intelligent Information Processing V. 〈10.1007/978-3-642-16327-2_16〉
Liste complète des métadonnées

Littérature citée [9 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01055065
Contributeur : Hal Ifip <>
Soumis le : lundi 11 août 2014 - 12:45:38
Dernière modification le : vendredi 11 août 2017 - 14:50:26
Document(s) archivé(s) le : mercredi 26 novembre 2014 - 22:00:35

Fichier

Associated_Clustering_and_Clas...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Quansheng Dou, Kailei Fu, Haiyan Zhu, Ping Jiang, Zhongzhi Shi. Associated Clustering and Classification Method for Electric Power Load Forecasting. Zhongzhi Shi; Sunil Vadera; Agnar Aamodt; David Leake. 6th IFIP TC 12 International Conference on Intelligent Information Processing (IIP), Oct 2010, Manchester, United Kingdom. Springer, IFIP Advances in Information and Communication Technology, AICT-340, pp.112-121, 2010, Intelligent Information Processing V. 〈10.1007/978-3-642-16327-2_16〉. 〈hal-01055065〉

Partager

Métriques

Consultations de la notice

251

Téléchargements de fichiers

116