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Abstract  In the process of power load forecasting, electricity experts always divide the 

forecasting situation into several categories, and the same category uses the same forecasting 

model. There exists such a situation that some load curve which domain experts consider 

belonging to the same category has shown the different characteristics, but some load curve which 

belongs to different category seems very similar, and usually able to gather into a category by 

clustering. For this problem, the definition of associated matrix was proposed in this paper, and 

based on this conception the associated clustering-classification algorithm was proposed, We 

applied this algorithm to data sample classification for power load prediction, the experiment 

showed that the classification results obtained by our method were more reliable. 
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1. Introduction 

Load forecasting is an important component for power system energy management system. 

Precise load forecasting helps the electric utility to make unit commitment decisions, reduce 

spinning reserve capacity and schedule device maintenance plan properly. Besides playing a key 

role in reducing the generation cost, it is also essential to the reliability of power systems. The 

system operators use the load forecasting result as a basis of off-line network analysis to determine 

if the system is vulnerable. If so, corrective actions should be prepared, such as load shedding, 

power purchases and bringing peaking units on line.  

Classification and clustering are two important research areas of data mining. To map data 

into some given classes, classification depends on prior knowledge, and clustering is to make 

samples in the same cluster similar enough, while samples belonging to different clusters should 

have enough difference. Recently, [1]~[2] use granularity computation to solve classification 

problems, and with the improvement of granularity computation theory these methods will 

develop further. [3]~[4] use ant colony optimization etc. to search the classification rules, these 

algorithms are the combination of data mining and intelligence computation. [5] proposes a new 

classification algorithm based on the combination of supported vector machine and non-supervisor 

clustering, and gets better results when it is applied in web page classification. [6] systematically 

summarizes the clustering method. All these researches represent the newest development in this 

area. 

In the process of power load forecasting, electricity experts always divide the forecasting 

situation into several categories, the same category uses the same forecasting model. There exists 

such a situation that some load curve which domain experts consider belonging to the same 

category has shown the different characteristics, but some load curve which belongs to different 

category seems very similar, and usually able to gather into a category by clustering. In other 

words, the prior knowledge is very likely uncoordinated with similarity measure. [7] analyzed this 

issue by granularity theory and put forward classification algorithm based on information 

granularity principle. This has strong theoretical and practical significance. Aimed at the above 

problem, this paper proposes the Associate Clustering-Classification Algorithm to ensure the 

consistency of classification and clustering. The algorithm in sample classification of power 

system load forecasting is applied, and better results are obtained. The detail of the Associate 

clustering-classification method will be described in the following.  

2. Associated Clustering and Classification method 

Let 
1 2{ , ..., }

k
U x x x=  be a sample set, δ  be a cluster operation, and it forms into a 

Cluster Genealogy G  under action of δ . We cut Cluster Genealogy G , divide U into 

independent subset , and get
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m
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Definition1. Suppose U  is a sample space, δ  is a cluster operation, 
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Algorithm.1 Associated Clustering and Classification Algorithm 

 

Step1. Classify C  according to prior-knowledge, and get the initial classification
 

1 2{ , ,..., }
n

C C C C=
 

Step2. Implement cluster operation according to Euclidean distance on U  and get cluster 

genealogyG . Cut from top of G , and get two branches, each of which forms one class. Get the 

Associated Matrix: 

 

˄2˅ 

Step3.  At some time , suppose Associated Matrix 
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Inspect each column 
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larger than µ , and | | | |jG Uτ> , where 0 1τ µ< < <  is the threshold parameter, | |jG  and 

| |U  represent the number of  elements of 
jG  and U  respectively. Cutting at the top of the 

cluster genealogy
jG , form the new branch, and revise the Associated Matrix. Implement step3 

repeatedly until there is only one 
iGk

λ µ>  in each row of Λ  or | | | |jG Uτ< . 

Step4. For each column 
1 2( , ,..., )T

Gj Gj nGjλ λ λ of the matrix Λ , if there are two or more 

components λ  sufficiently dominant in their rows, set these components be 

1
, ,...hGj h Gj pGjλ λ λ

+
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1
, ,...hGj h Gj pGjλ λ λ

+
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Step5. Analyze each row 
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Row λ λ λ= of matrix Λ . If 

i
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i
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i

Row , and they are 
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respectively. 
i

C Will be divided into l  categories based on
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Step 1 and 2 of the algorithm implement classification and clustering operation on the sample 

collection. The emphasis is that the prior-knowledge used by classification and the measure 

function used by clustering are essentially the same, otherwise, it is not worth harmonizing.  

Step3 of the algorithm can ensure that there is only one classification 
i

C , whose most 

samples appear in a clustering 
jG . If there are two or more classifications, whose most elements 

are in the same clustering called
jG , cut up 

jG  on the top of the clustering genealogy. Finally, if 

there are still two or more classifications whose most elements are in the same clustering 
jG , the 

number of samples in
jG  must be below a certain size. These classifications were combined into 

one class in step4.  

In step5, if a row 
i

Row  of the Associated Matrix is one term sufficiently dominant, 
i

C  

should be set as one class individually. Steps 3 and 4 have ensured that there can be no more than 

two categories 
i

C  whose  majority of samples appear in a clustering 
jG .If 

i
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term sufficiently dominant vector, and most samples of 
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should be added to a certain classification in 
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C  with the principle of minimum distance. 

By analyzing the performance process of the above algorithm, it’s easy to see that when the 

algorithm is finished, Associated Matrix Λ has k rows which are one term sufficiently dominant 

and s k−  rows which are multi-term dominant. Here, 0k ≥  and s n≤ , n  is the number of 

classifications obtained by priori knowledge. And no columns in Λ can make all rows sufficiently 

dominant. The above can be shown in the following formula˄4˅: 
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Two kinds of standards are involved here. One is the priori knowledge of domain experts. 

Because many complex factors affect the change of power load, and some reasons which cause 

power load changing is not clear, the priori knowledge used by experts on power, often just reflect 

the variation of load roughly. The other is that characteristics of load change can be objectively 

identified by clustering, but the reasons why the samples cluster into a class are not yet determined. 

This makes the clustering method can not be directly used on predicting. For this reason, the next 

best thing is to take a relatively compromise. Associated clustering-classification algorithm is an 

exactly compromise method between classification and clustering. 

3. Description of the problem of power system load forecasting 

Load forecasting is a traditional research field of power system [9]~[11]. In the process of 

power load forecasting, electricity experts always divide the forecasting situation into several 

categories, the same category uses the same forecasting model. So a reasonable classification is 

the basis for effective forecast. Generally, domain experts classify the samples relying on their 

experience. In this paper, 96-points data samples of a Chinese power company in recent years 

were classified by the expert’s experience and associated clustering-classification algorithm 

described in the previous section. Here, the forecasting models used by the different classification 

methods are the same. 

First of all, the samples are classified. For different categories, Daubechies wavelets are used 

to extract the feature of load data. 

Let { ( )} 1,...,96p t t =  be the load value of 96 points one day. Let 
0 ( ) ( )C t p t= , wavelet 

decomposition is shown as follows: 
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In the formula [ ] [ ]h k h k− = , [ ] [ ]g k g k= − ,
1[ ] ( 1) [ 1]kg k h k−

= − − . [ ]h k  is the 

low-pass filter, [ ]g k  is the high-pass filter, and L  is the decomposition level . [ ]jC k ， [ ]jD k  

1,2,...,j L=  are low-pass signal (features) and high-pass signal (noise) of the j-layer wavelet 

transform respectively. By the wavelet transform, the 96-points time series are broken down into 

two parts, feature and noise. The dimension of the low-pass signal 
1jC

+
 and high-pass signal 

1j
D

+
 obtained in each of the decomposition is half of the dimension of 

jC . Let 
0

C  be the 96 

points load data initially, the dimensions of 
3 3 2 1
, , ,C D D D  are 12,12,24,48 after three wavelet 

decomposition. So the dimension of 
3 3 2 1{ , , , }C D D D  remains 96. Here, the previous 12 

components 
3

C  contain the overall volatility information { ( )}p t ,i.e. the characteristic 

component while 
3

D ,
2

D , and 
1

D  are high-frequency information, i.e. the noise component of 

{ ( )}p t  at different spatial scales. { ( )}p t can be obtained by reconstruction of vector 

3 3 2 1{ , , , }C D D D . 

We can obtain the temperature information from the meteorological station and analyze the 

relationship between the temperature and the feature components. As the temperature changes, the 

feature component values show a certain discipline. We can regress this law and get the 

polynomial relations between the temperature and features components. So the feature 

components can be forecast according to the change of real sense temperature.  

It is impossible to determine the relationship between temperature and noise with regression 

approach, because noise components show splattering distribution to the temperature. As 

described above, noise component is constituted by the high frequency information on different 

scales of space obtained by three-layer wavelet decomposition to 96 points data. Its vector length 

is 84. We use the following method to determine the noise components: 

Let 
1 2 84{ , ,..., }

i i i i
D d d d= ，i=1,2,…,q be the noise component of 96 point data for one day. 

Let

84

1 1

( ) | |
q

ij

i j

f d d d
= =

= −∑∑ , where q is the total number of samples for the classification. The 



noise component jd ，j=1,2,…84  can be determined by solving the optimization problem of 

min ( )f d . 

As mentioned above, we can predict the feature 
3{ }C  through the temperature. 

Reconstruction of 
3

C  and 
3 2 1{ , , }D D D  will get the electricity load forecasting value on that 

day. 

4. Forecasting results of different classification methods 

Classify the samples by date type according to prior knowledge, denote 

as
1 2{ , ,..., }

n
C C C C= . For each of  the 96 points historical load data denoted as 

0 1 95( , ,..., )p p p , let 1 0 95 942 1

0 1 94

( , ,..., )
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− −−
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distance to form cluster genealogy, and reclassify the above classification with associated 

clustering-classification algorithm. The original classification 
1{ ,... }

n
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For all the rows which are one term sufficiently dominant in associated matrix Λ . 

Classification results based on priori knowledge are about the same as the results of clustering, 

and the method used for forecasting is consistent with that mentioned above. 

For all the rows as (0,..., ,...0..., ,...,0)
ij im

λ λ , which are multi-terms dominant in 

Associated Matrix Λ , suppose 
1 1

' , ' ,... '
is is is l

λ λ λ
+ + −

 are dominant items. There exists 

classification 
1 1

' , ' ,... '
is is is l

C C C
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 in the new classification set 'C  corresponding with them. 

Extract feature and noise in these classification respectively, and regress relationship between the 

feature and temperature, and reconstruct with the corresponding high-frequency signal to get 

predictor
1 1
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is is is l

P P P
+ + −

. Because the reason why 
i

C  is classified into 



1 1
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 is unknown, a specific forecast can only start from a priori knowledge. 

Forecast should be taken as follows on the corresponding situation of the row: 

      

1
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To verify the effectiveness of the method described in this paper, we use the historical data of 

the previous two years as the learning sample, and respectively predict the load of next year by 

different classification methods. In the process of load forecasting, for some special holidays such 

as the Chinese Spring Festival and New Year's Day, it has no sense to regress for lacking of 

historical data, and the forecast can only be made by historical trends.  

Table 1 lists several groups of statistical results of the experiment. In table 1, statistics type A 

is the percentage of the data points whose errors are less than 1%. B is the percentage of points 

whose errors are between 1% and 3%. C is the percentage of points whose errors are larger than 

3%. D is the average of root-mean-square error between predictions and the actual data. 

 

Table1. Predictions based on different classification.  Error described as: A, B, C, D are equal to the 

percentage of points whose errors are less than 1%, the percentage of points whose errors are between 1% 

and 3% ,the percentage of points whose errors are larger than 3% and the average of error respectively, in 

the forecast data points. 

 

From Table 1, we can see that forecasting results based on the new classification method are 

significantly better than the original classification based on experience. It is not difficult to see that 

through the above analysis, the load data often have different characteristics objectively in the 

classification based on priori knowledge. Considering classification whose features is different 

from samples as one classification to regress is the main reason for the large error of regression 

curve. The associated clustering-classification algorithm in this paper avoids this problem to a 

Year  Error type Forecasting result of classification 

according to the prior knowledge 

Forecasting result of  Associated 

Clustering and Classification 

 

2007 

A 68%˄23827 points˅ 76%˄26630points˅ 

B 17%˄5957points˅ 14%˄4906points˅ 

C 15%˄5256points˅ 10%˄3504points˅ 

D 3.02% 2.41% 

 

2008 

A 77%˄27055points˅ 81%˄28460points˅ 

B 15%˄5270points˅ 13%˄4568points˅ 

C 8%˄2811points˅ 6%˄2108points˅ 

D 2.16% 1.88% 

The first half 

of 

2009  

A 75%˄13032points˅ 80%˄13901points˅ 

B 16%˄2780points˅ 15%˄2606points˅ 

C 9%˄1564points˅ 5%˄869points˅ 

D 2.25% 1.82% 



certain extent, and forecast accuracy has been improved significantly. It also validated that the 

method proposed in this paper better solved the inconsistent problem between the priori 

knowledge and the similarity measure function. 

5. Conclusion  

Classification and clustering are two important research areas of data mining; however in the 

process of power load forecasting, the classification results based on priori knowledge and the 

clustering results are not consistent. For this problem and the practical application background of 

power system, the definition of associated matrix has been proposed in this paper, and based on 

this concept, the associated clustering-classification algorithm has been proposed. We applied this 

algorithm to data sample classification for power load prediction, the experiment showed that the 

classification results obtained by our method were more reliable. 
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