
HAL Id: hal-01055144
https://inria.hal.science/hal-01055144

Submitted on 11 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Specification and Testing of E-Commerce Agents
Described by Using UIOLTSs

Juan José Pardo, Manuel Núñez, M. Carmen Ruiz

To cite this version:
Juan José Pardo, Manuel Núñez, M. Carmen Ruiz. Specification and Testing of E-Commerce Agents
Described by Using UIOLTSs. Joint 12th IFIP WG 6.1 International Conference on Formal Methods
for Open Object-Based Distributed Systems (FMOODS) / 30th IFIP WG 6.1 International Conference
on Formal Techniques for Networked and Distributed Systems (FORTE), Jun 2010, Amsterdam,
Netherlands. pp.78-86, �10.1007/978-3-642-13464-7_7�. �hal-01055144�

https://inria.hal.science/hal-01055144
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Specification and testing of e-commerce agents

described by using UIOLTSs⋆

Juan José Pardo1, Manuel Núñez2, and M. Carmen Ruiz1

1 Departmento de Sistemas Informáticos
Universidad de Castilla-La Mancha, Spain

juanjose.pardo@uclm.es, MCarmen.Ruiz@uclm.es
2 Departamento de Sistemas Informáticos y Computación

Universidad Complutense de Madrid, Spain
mn@sip.ucm.es

Abstract. In this paper we expand our work in our specification for-
malism UIOLTSs. We present three implementation relations and provide
alternative characterizations of these relations in terms of the tests that
the implementation under test successfully passes. In addition, we present
the main ideas to obtain an algorithm to derive complete test suites from
specifications.

1 Introduction

During the software development process, it is very usual to apply structured
methodologies, consisting of several phases such as analysis, specification, design,
coding, and testing. Formal methods are a powerful tool that should be used
along all the software development phases because they facilitate the descrition,
analysis, validation and verification of software system. So developer can discover
posible errors at the beginning of the development process.

Although it is very important to use formal methods to specify the behavior
of the system, it is even more important to ensure that the implementation of the
system is correct. In this line, testing is one of the most extended techniques to
critically evaluate the quality of systems. Although testing and formal methods
are considered rival, they are complimentary techniques that can profit from each
other. The idea is that we have a formal model of the system (a specification), we
check the correctness of the system under test by applying experiments and we
match the results of these experiments with what the specification says and decide
whether we have found an error. The formal description of the system allows to
automatize most of the testing phases.

The main theory underlying formal specification and testing can be also ap-
plied to a specific kind of software like e-commerce agents. In this context, it is
necessary to introduce new features in the formal language in order to express the
high-level requirements of agents, which are usually defined in economic terms. In
the literature, we can find several proposals to use formal methods to formalize
multi-agent systems (see [1]).

⋆ This research was partially supported by the TESIS project (TIN2009-14312-C02), by
the Junta de Castilla-la Mancha project “Aplicación de métodos formales al diseño
y análisis de procesos de negocio” (PEII09-0232-7745), and by the UCM-BSCH pro-
gramme to fund research groups (GR58/08 - group number 910606).



The initial point of this paper can be found in one formalism previously devel-
oped within our research group [2]. In that paper we presented a formalism called
utility state machines, which was based on finite state machines with a strict alter-
nation between inputs and outputs and, where the user’s preferences are defined
by means of utility functions associating a numerical value to each possible set of
resources that the system can trade. The alternation between inputs and outputs
is a ver strong restriction that we wanted avoid in our model but, this slightly
complicates the semantic framework. In particular, we need to include the notion
of quiescence to characterize states that cannot produce outputs and we have to
redefine the notion of test and how to apply tests to systems. On the contrary,
we have reduced some of the complexity associated with our previous formalism.

Our new formalism, called Utility Input-Output Labeled Transition System (in
short, UIOLTS), was presented in [3]. In this paper we complete our previous work
by defining three implementation relations that can be used to formally establish
the conformance of a system under test with respect to a specification. One of
them takes into account only the sequences of inputs and outputs produced by the
system and the other two relations consider resources that the system has after
an action is executed. We redefine the notion of test so that we can obtain more
information from the system under test. In order to relate the application of tests
and our implementation relations, we define an algorithm to derive complete test
suites from specifications, that is, an implementation conforms to a specification
if and only if successfully passes the test suite produced from the specification.

The rest of the paper is structured as follows. In Section 2 we introduce our
formalism. In Section 3 we define our implementation relations. In Section 4 we
give the notion of test and how to apply tests to implementations under test.
Finally, in Section 5 se present our conclusions and some lines for future work.

2 A framework to formally specify economic agents

In this section we present our formalism as defined in [3]. Basically, a UIOLTS
is a labeled transition system where we introduce some new features to define
agent behaviors in an appropriate way. The first new element that we add is
a set of variables, where each variable represents the amount of the resource
that the system owns. In addition, we associate a utility function to each state
of the system. This utility function can be used to decide whether the agent
accepts an exchange of resources proposed by another agent. Intuitively, given a
utility function u we have that u(x) < u(y) means that the basket of resources
represented by y is preferred to x.

Definition 1. We consider R+ = {x ∈ R |x ≥ 0}. We will usually denote vectors

in R
n (for n ≥ 2) by x, y, v . . . Given x ∈ R

n, xi denotes its i-th component. We
extend to vectors some usual arithmetic operations. Let x, y ∈ R

n. We define the
addition of vectors x and y, denoted by x + y, simply as (x1 + y1, . . . , xn + yn).
We write x ≤ y if for all 1 ≤ i ≤ n we have xi ≤ yi.

We will suppose that there exist n > 0 different kinds of resources. Baskets

of resources are defined as vectors x ∈ R
n
+. Therefore, xi = r denotes that we

own r units of the i-th resource. A utility function is a function u : R
n
+ −→ R.

In microeconomic theory there are some restrictions that are usually imposed on
utility functions (mainly, strict monotonicity, convexity, and continuity). ⊓⊔



Our systems can perform two different types of actions. Output actions are
initiated by the system and cannot be refused by the environment. We consider
that the performance of an output action can cost resources to the system. In
addition, the performance of an output action will usually have an associated
condition to decide whether the system performs it or not. Input actions are initi-
ated by the environment and cannot be refused by the system, that is, we consider
that our systems under test are input-enabled (specifications do not need to be
input-enabled). The performance of an input action can increase the resources
of the agent that performs it. In addition to these two types of actions we need
a third type that we introduce for technical reasons to represent quiescence [4].
This special action is denoted by δ, and special transitions labeled by this same
δ action. In the following definition we also introduce the notion of configuration.
Usually, in order to clearly identify where a system is, it is enough to record the
current state. In our setting, in order to record the current situation of an agent
we use pairs where we keep the current state of the system and the current amount
of available resources.

Definition 2. A Utility Input Output Labeled Transition System, in short UIOLTS,
is a tuple M = (S, s0, L, T, U, V ) where

– S is the set of states, being so ∈ S the initial state.
– V is an n-tuple of resources belonging to R+. We denote by v0 the initial

tuple of values associated with these resources.
– L is the set of actions. The set of actions is partitioned into three pairwise

disjoint sets: the set of imputs actions LI which elements are preceded by ?,
the set of output actions LO which elements are preceded by ! and a set with
one special ation δ that represents quiescence.

– T is the set of transitions that is partitioned into three pairwise disjoint sets:
the set of input transitions TI which elements are tuples (s, ?i, x̄, s1) where x̄ ∈
R

n
+ is the increase in the set of resources, the set of output transitions TO which

elements are tuples (s, !o, z̄, C, s1) where z̄ ∈ R
n
+ is the decrease in the set of

resources, and C is a predicate on the set of resources and the set of quiescence
transtions with tuples (s, δ, 0, Cs, s) where Cs =

∧
(s,!o,z̄,C,s1)∈TO

¬C.

– U : S → (Rn
+ −→ R+) is a function associating a utility function to each state

in S.

A configuration of M is a pair (s, v̄), where s is the current state and v̄ is the
current value of V . We denote by Conf(M) the set of configurations of M .

We say that M is input-enabled if for all s ∈ S and ?i ∈ LI there exist x̄ and
s1 such that (s, ?i, x̄, s1) ∈ TI . ⊓⊔

Now we can define the concatenation of several transitions of an agent to
capture the different evolutions, from one configuration to another one, that an
agent can carry out. These evolutions can be produced either by executing an
input or an output action or by offering an exchange of resources. As we will see,
exchanges of resources have low priority and will be allowed only if no output
can be performed. The idea is that if we can perform an output with the existing
resources, then we do not need to exchange resources.

Definition 3. Let M = (S, s0, L, T, U, V ) be a UIOLTS. We consider that M can
evolve from the configuration c = (s, v) to the configuration c′ = (s′, v′) if one of
the following options is possible:



1. If there is an input transition (s, ?i, x̄, s1), then this transition can be executed.
The new configuration is c′ = (s1, v + x̄).

2. If there is an output transition (s, !o, C, z̄, s1) such that C(v) holds then the
transition can be executed. The new configuration is c′ = (s1, v − z̄).

3. Let us consider the transition associated with quiescence at s: (s, δ, Cs, 0̄, s).
If Cs(v) holds, that is, no output transition is currently available, then this
transition can be executed. The configuration is not altered, that is, c′ = (s, v).

4. Let us consider again the transition associated with quiescence at s, that is,
(s, δ, Cs, 0̄, s). If Cs(v) holds, then we can offer an exchange. We represent an
exchange by a pair (ξ, ȳ) where ȳ = (y1, y2, . . . yn) ∈ R

n is the variation of the
set of resources. Therefore, yi < 0 indicates a decrease of the resource i while
yi > 0 represents an increase of the resource i. M will be willing to perform
an exchange (ξ, x̄) if U(s, v) < U(s, v + x̄). If another agent is accepting the
exchange, then the new configuration is c′ = (s, v + ȳ).

We denote an evolution from the configuration c to the configuration c′ by the
triple (c, (a, ȳ), c′), where a ∈ L∪{ξ} and ȳ ∈ R

n. We denote by Evolutions(M, c)
the set of evolutions of M from the configuration c and by Evolutions(M) the
set of evolutions of M from (s0, v0), the initial configuration.

A trace of M is a finite sequence of evolutions. Traces(M, c) denotes the set of
traces of M from the configuration c and Traces(M) denotes the set of traces of M

from the initial configuration. Let l = e1, e2, . . . , em be a trace of M where for all
1 ≤ i ≤ m we have ei = (ci, (ai, x̄i), ci+1). The observable trace associated to l is a
triple (c1, σ, cn+1), where σ is the sequence of actions obtained from a1, a2, . . . , am

by removing all occurrences of ξ. We sometimes represent this observable trace
as c1

σ
=⇒ cn+1. ⊓⊔

3 Implementation relations for UIOLTSs

In this section we introduce our implementation relations to formally establish
when an implementation is correct with respect to a specification. In our context,
the notion of correctness has several possible definitions. For example, a user of
our methodology may consider that an implementation I of a specification S is
good if the number of resources that I obtains after performing some actions is
always greater than the one given by S while another user could be happy with
an agent that obtains smaller amounts of resources as long as the utility returned
by them is bigger than the one foreseen by the specification. Let us remind that
implementations must be input-enabled while specifications might not be.

We have defined three different implementation relations. The first one is close
to the classical ioco implementation relation [5] where an implementation I is
correct with respect to a specification S if the output actions executed by I

after a sequence of actions is performed are a subset of the ones that can be
executed by S. Intuitively, this means that the implementation does not invent

actions that the specification did not contemplate. The formal definition of our
first implementation relation was presented in [3]

In order tu define our two new implementation relation we introduce some
auxiliary notation



Definition 4. Let M = (S, s0, L, T, U, V ) be a UIOLTS, c = (s, x) ∈ Conf(M)
a configuration of M , and σ ∈ L∗ be a sequence of actions. Then,

c after σ = {c′ ∈ Conf(M)|c
σ

=⇒ c′}

We use M after σ as a shorthand for c0 after σ, being c0 the initial configuration
of M . ⊓⊔

Intuitively, c after σ returns the configuration reached from the configuration
c by the execution of the trace σ.

Our firts new implementation relation is based on the ioco mechanism but
we take into account both the resources that the system has and the actions that
the system can execute. In order to define the new relation we need to define the
set out of outputs. In this case we have two components: The output action that
can be executed and the set of resources that the system has. We also introduce
an operator to compare sets of pairs (output,resources).

Definition 5. Let M = (S, s0, L, T, U, V ) be a UIOLTS and c = (s, x̄) ∈ Conf(M)
be a configuration of M . Then,

out′(c) = {(!o, ȳ) ∈ LO × R
n
+|∃s1, z̄, C : (s, !o, C, z̄, s1) ∈ T ∧ C(x) ∧ ȳ = x̄ − z̄}

∪{(δ, x̄)|∃Cs : (s, δ, Cs, 0̄, s) ∈ T ∧ Cs(x)}

We extend this function to deal with sets of configurations in the expected way,
that is, out′(C) =

⋃
c∈C out′(c).

Given two sets A = {(o1, ȳ1), . . . , (on, ȳn)} and B = {(o1, x̄1), . . . , (on, x̄n)},
we write A ⊑ B if act(A) ⊆ act(B) and for all output action !o ∈ act(A) we
have min(rec(A, o)) ≥ max(rec(B, o)), where Act(X) = {a|(a, ȳ) ∈ X} and
rec(X, o) = {r|(o, r) ∈ X}. ⊓⊔

The set out′(c) contains those actions (outputs or quiescence) that can be
performed when the system is in configuration c as well as the set of resources
obtained after their performance. Next, we introduce our new implementation
relation. We consider that an implementation I is correct with respect to a spec-
ification S if the output actions performed by the implementation in a state are
a subset of those that can be performed by the specification in this state and
the set of resources of implementation I is better than the set of resources in the
specification.

Definition 6. Let I, S be two UIOLTSs with the same set of actions L. We
write I iocor S if for all sequence of actions σ ∈ Traces(S) we have that
out′(I after σ) ⊑ out′(S after σ). ⊓⊔

Our new second implementation relation is again based on the ioco approach
but we take into account both the utility value that the available resources provide
and the actions that the system can execute. In order to define the new relation
we need to redefine the set of immediately available outputs. In this case, our set
of outputs has two components: The output action that can be executed and the
value of the utility function after this action is executed. We also introduce an
operator to compare sets of pairs (output,utility).



Definition 7. Let M = (S, s0, L, T, U, V ) be a UIOLTS and c = (s, x̄) ∈ Conf(M)
be a configuration of M . Then,

out′′(c) = {(!o, U(s1, x̄ − z̄)) ∈ LO × R+|∃s1, z̄, C : (s, !o, C, z̄, s1) ∈ T ∧ C(x)}

∪{(δ, U(s, x̄))|∃Cs : (s, δ, Cs, 0̄, s) ∈ T ∧ Cs(x)}

We extend this function to deal with sets of configurations in the expected way,
that is, out′′(C) =

⋃
c∈C out′′(c).

Given two sets A = {(o1, u1), . . . , (on, un)} and B = {(o1, u1), . . . , (on, un)},
we write A ⊑′ B if act(A) ⊆ act(B) and for all output action !o ∈ act(A) we
have min(util(A, o)) ≥ max(util(B, o)), where act(X) = {a|(a, y) ∈ X} and
util(X, o) = {u|(o, u) ∈ X}. ⊓⊔

The set out′′(c) contains those actions (outputs or quiescence) that can be
performed when the system is in configuration c as well as the value of the utility
function obtained after their performance. Next, we introduce our new implemen-
tation relation. We consider that an implementation I is correct with respect to a
specification S if the output actions performed by the implementation in a state
are a subset of those that can be performed by the specification in this state and
the value of the utility function of implementation I is better than the value of
the utility function in the specification.

Definition 8. Let I, S be two UIOLTSs with the same set of actions L. We
write I iocou S if for all sequence of actions σ ∈ Traces(S) we have that
out′′(I after σ) ⊑′ out′′(S after σ). ⊓⊔

4 Tests: Definition and application

A test represents an experiment that will be carried out on an implementation
under test (IUT). Depending on the answers provided by the IUT we may conclude
that it is behaving in an unexpected way. In our setting, a test can do three
different things: It can accept an output action started by the implementation, it
can provide an input action to the implementation, or it can propose a exchange
of resources. If the test receives an output, then it checks whether the action
belongs to the set of expected ones (according to its description); if the action
does not belong to this set, then the tester will produce a fail signal. In addition,
each state of a test saves information about the set of resources that the tested
system has if the test reaches this state. Therefore, we might also detect errors if
the amounts of resources differ from the ones that the test indicates.

In our framework, a test for a system is modeled by a UIOLTS, where its set
of input actions is the set of output actions of the specification and its set of
output actions is the set of input actions of the specification. Also, we include a
new action θ that represents the observation of quiescence. In order to be able to
accept any output from the tested agent, we consider that tests are input-enabled,
since its inputs correspond to outputs of the tested agent. Let us remark that the
current notion of test is more involved that the one given in [3] since the latter
did not include any mechanism to deal with the amount of resources available to
the implementation under test.



Definition 9. Let M = (S, s0, L, T, U, V ) be and UIOLTS, with L = LI ∪ LO ∪
{δ}. A test for M is a UIOLTS t = (St, st

0, L
t, T t, λ, V ) where

– St is the set of states, where st
0 ∈ St is the initial state and there are two

special states called fail and pass, with fail 6= pass.
– λ : S → R

n
+ is a function that assigns a tuple of real numbers to a state. This

tuple represents the amount of each resource in this state.
– Lt is the set of actions where LI is the set of outputs of M , LO is the set of

imputs of M , θ is a special action that represents the detection of quiescence
and ξ is an special action that represents the proposal of an exchange.

– T t = Te ∪ Tθ is the set of transitions, where
• Te ⊆ St × LO ∪ LI ∪ {ξ} × R

n × St is the set of regular transitions.
• Tθ ⊆ St × {δ} × St.

⊓⊔

Our tests can compare the resources that the IUT has and the ones properly
specified in the test. Therefore, it is suitable to test systems according to the ideas
underlying the first two implementation relations. If we are interested only in the
returned utility (regardless of the specific amounts of different resources), we have
to replace the definition of λ by the following: λ : S → (Rn

+ → R) is a function
that assigns a utility function to each state in S.

We define configurations of a test in the same way that we used to define them
for UIOLTSs, and we thus omit the definition.

Given an implementation I and a test t, running t with I is the synchronized
parallel execution of both taking into account the peculiarities of the special ac-
tions δ, θ, and ξ.

A first notion of passing a test considers only that the actions that the IUT
performs are the expected ones.

Definition 10. A test execution of the test t with an implementation I is a trace
of I|⌈t leading to one of the states pass or fail of t.

We say that an implementation I passes a test t if all test executions of t with
I go to a pass state of t. ⊓⊔

Another more complex notion for passing a test, considering the resources
administered by the system, is the following.

Definition 11. An implementation I passesr a test t if all test execution σ of t

with I reaches a pass state s of t and rec(I after σ) ≥ rec(S after σ). ⊓⊔

The previous definition can be modified to deal with the alternative notion of
test discussed at the end of Definition 9 where we do not compare resources but
only consider the utility returned by the available resources.

Definition 12. An implementation I passesu a test t if all test execution σ of t

with I reaches a pass state s of t and util(I after σ) ≥ util(S after σ). ⊓⊔

These three notions can be easily extended to deal with set of tests in the
expected way: If T is a test suite then we say that I passesx T if for all t ∈ T we
have I passesx t.



After definition of test we need to define an algorithm to derive test from
specifications. Due to space limitation we do not show the algorithm.

Our algorithm is non-deterministic in the sense that there exist situations
where different possibilities are available, and we have different tests depending on
the choice that we select. If we consider all the possible choices we will have a full
test suite. We denote the test suite produced by the algorithm for a specification
M by Test(M). Now we can present results that relate, for a specification S and
an implementation I, the application of test suites derived from the specification
and the different implementation relations. we omit the proof of this theorem due
to space-limitations.

Theorem 1. Lets S, I be UIOLTSs. We have I ioco∗ S if and only if I passes∗
tests(S), where ∗ is r or u or nothing .

5 Conclusions and Future work

We have recently defined a new formalism, called Utility Input Output Labeled

Transition Systems, to specify the behavior of e-commerce agents. In this paper we
have introduced a testing methodology, based on this formalism, to test whether
an implementation of a specified agent behaves as the specification says that it
behaves. We have defined three different implementation relations, a notion of
test, and an algorithm to obtain, from a given specification, a set of relevant

tests.
Concerning future work, we currently focus on two research lines. The first

one is based on theoretical aspects and we would like to extend our formalism in
order to specify the behavior of agents that are influenced by the passing of time
and would like to define the interaction between agents in order to test multi-
agents systems. The second line is more practical since we would like to apply our
formalism to real complex agents. In order to support this line of work, we are
developing a tool to automatically generate tests from specifications and apply
them to implementations.

References

1. M. Núñez, I. Rodŕıguez, and F. Rubio. Formal specification of multi-agent e-barter
systems. Science of Computer Programming, 57(2):187–216, 2005.

2. M. Núñez, I. Rodŕıguez, and F. Rubio. Specification and testing of autonomous agents
in e-commerce systems. Software Testing, Verification and Reliability, 15(4):211–233,
2005.

3. J.J. Pardo, M. Núñez, and M.C. Ruiz. A novel formalism to represent collective
intelligence in multi-agent systems. In New Challenges in Computational Collective

Intelligence, volume 244 of Studies in Computational Intelligence, pages 193–204.
Springer, 2009.

4. J. Tretmans. Test generation with inputs, outputs and repetitive quiescence. Software

– Concepts and Tools, 17(3):103–120, 1996.
5. J. Tretmans. Model based testing with labelled transition systems. In Formal Methods

and Testing, LNCS 4949, pages 1–38. Springer, 2008.


