N

N
N

HAL

open science

Crash Recovery in FAST FTL
Sungup Moon, Sang-Phil Lim, Dong-Joo Park, Sang-Won Lee

» To cite this version:

Sungup Moon, Sang-Phil Lim, Dong-Joo Park, Sang-Won Lee. Crash Recovery in FAST FTL. 8th
IFIP WG 10.2 International Workshop on Software Technologies for Embedded and Ubiquitous Sys-

tems (SEUS), Oct 2010, Waidhofen/Ybbs, Austria. pp.13-22, 10.1007/978-3-642-16256-5_4 .

01055380

HAL Id: hal-01055380
https://inria.hal.science/hal-01055380

Submitted on 12 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://inria.hal.science/hal-01055380
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Crash Recovery in FAST FTL*

Sungup Moon, Sang-Phil Lim', Dong-Joo Park?, and Sang-Won Lee!

! Sungkyunkwan University, Cheoncheon-Dong, Jangan-Gu, Suwon, Gyeonggi-Do
440-746, Korea
2 Soongsil University, Sangdo-Dong, Dongjak-Cu, Seoul 156-743, Korea
{sungup, 1sfeel0204}@skku.edu, djpark@ssu.ac.kr and swlee@skku.edu

Abstract. NAND flash memory is one of the non-volatile memories
and has been replacing hard disk in various storage markets from mo-
bile devices, PC/Laptop computers, even to enterprise servers. However,
flash memory does not allow in-place-update, and thus a block should be
erased before overwriting the existing data in it. In order to overcome the
performance problem from this intrinsic deficiency, flash storage devices
are equipped with the software module, called FTL (Flash Translation
Layer). Meanwhile, flash storage devices are subject to failure and thus
should be able to recover metadata (including address mapping infor-
mation) as well as data from the crash. In general, the FTL layer is
responsible for the crash recovery. In this paper, we propose a novel
crash recovery scheme for FAST, a hybrid address mapping FTL. It
writes periodically newly generated address mapping information in a
log structured way, but it exploits the characteristics of FAST FTL that
the log blocks in a log area are used in a round-robin way, thus providing
two advantages over the existing FTL recovery schemes. One is the low
overhead in performing logging during normal operations in FTL. The
other is the fast recovery time.

1 Introduction

For the past decade, we have witnessed that flash memory is deployed as an
alternative data storage for mobile devices, laptops, and even enterprise server
applications. Mainly because of the erase-before-update characteristics in flash
memory, every flash memory storage comes with a core software module, flash
translation layer(FTL). Since FTL can critically determine the performance of a
flash device, numerous FTLs have been proposed. And taking into account that
the capacity of flash memory devices drastically increases, the efficiency of FTLs
becomes more and more important. According to address mapping, the existing
FTLs can be categorized largely into block mapping, page mapping, and hybrid
mapping.

However, most existing works on FTL has been focused on issues such as
performance, wear leveling, and garbage collections. In contrast, despite of its

* This research was supported by MKE, Korea under ITRC NIPA-2010-(C1090-
1021-0008) and Seoul Metropolitan Government under ‘Seoul R&BD Program
(PA090903).’

practical importance, the recovery from power-off failure in FTLs has not been
paid much attention to. As far as we know, there is no work which deals with
the crash recovery in FTLs comprehensively. When a page write is requested,
a new address mapping information, in addition to the data page itself, should
also be persistently propagated to flash for power-off recovery, either in page
mapping or hybrid mapping. Thus, under a naive solution like this, a page write
request in flash memory would at least need two physical flash writes, which could
degrade the FTL performance. Of course, both the algorithmic complexity and
its run-time overhead in FTL may considerably depend on the address mapping
being used. For example, in case of block mapping, we have to write the changed
address mapping information, only when the block mapping changes, not for each
page write. Thus, the recovery solution in block mapping would be very simple
and does not incur much run time overhead. In contrast, for every data page
write in page mapping FTL, a new page mapping entry should be written in flash
memory. In order to alleviate this overhead, we can use a checkpoint approach for
flushing new page-level mapping entries periodically in a log structured manner.
But, even this approach has the garbage collection overhead for the old page-level
mapping entries.

In this paper, we propose a novel crash recovery mechanism for FAST, a
hybrid address mapping FTL. In particular, it writes the new mapping infor-
mation periodically in a log structured way, but it exploits the characteristics
of FAST FTL that the log blocks in a log area are used in a round-robin way,
thus providing two advantages over other FTL recovery schemes. One is the low
overhead in writing the new mapping metadata during the normal operation in
FTL. In fact, our recovery scheme will require a nominal size of mapping meta-
data to be written per data page write. In terms of additional write overhead
for recovery, our scheme could outperform the existing approach by up to an
order of magnitude. The other advantage is the fast recovery time. With our
scheme, the recovery phase can finish as early as possible, and then the FAST
FTL proceed in a normal mode. In addition, this paper deals with the duality of
flash write overhead between original data page and the metadata for recovery,
and we argue that, for comparing FTLs in terms of performance, we should take
into account the overhead in maintaining the metadata persistently for recovery.

This paper is organized as follows. Section 2 describes the related work of
flash memory and the address mapping table management, and then we explain
our recovery method in section 3. In Section 4, we evaluate the management cost
arithmetically. Finally, Section 5 concludes this paper.

2 Background and Related Work

2.1 Background: Flash Memory, FTL, and Address Mapping

With flash memory, no data page can be updated in place without erasing a
block of flash memory containing the page. This characteristic of flash memory
is called “erase-before-write” limitation. In order to alleviate the erase-before-
write problem in flash memory, most flash memory storage devices are equipped

with a software or firmware layer called Flash Translation Layer (FTL). An FTL
makes a flash memory storage device look like a hard disk drive to the upper
layers. One key role of an FTL is to redirect each logical page write from the
host to a clean physical page, and to remap the logical page address from the
old physical page to the new physical page. In addition to this address mapping,
an FTL is also responsible for data consistency and uniform wear-leveling.

By the granularity of address mapping, FTLs can be largely classified into
three types: page mapping FTLs [2], block mapping FTLs [1], and hybrid map-
ping FTLs including BAST[4] and FAST [5]. In a block mapping FTL, address
mapping is done coarsely at the level of block. When the data in a block is to be
overwritten, FTL assigns a new empty block for the block. Although this inflexi-
ble mapping scheme often incurs significant overhead for page writes, we need to
change the block mapping information and store the new mapping information
persistently only when a new physical block is assigned to a logical block.

In a page mapping FTL, on the other hand, address mapping is finer-grained
at the level of pages, which are much smaller than blocks. The process of address
mapping in a page mapping FTL is more flexible, because a logical page can be
mapped to any free physical page. When an update is requested for a logical page,
the FTL stores the data in a clean page, and updates the mapping information for
the page. When it runs out of clean pages, the FTL initiates a block reclamation
in order to create a clean block. The block reclamation usually involves erasing
an old block and relocating valid pages. However, a page mapping FTL requires
a much larger memory space to store a mapping table. Because it has a large
address mapping table. In order to guarantee the consistent mapping information
against the power-off failure, a page mapping FTL basically stores the whole page
mapping table for every page write and this overhead is not trivial if we consider
the large page mapping table. In a page mapping table, another way to recover
the consistent page mapping information from failure is to store the logical page
address in the spare area of each physical page, but this approach will suffer
from reconstructing the mapping information by scanning all the pages.

Hybrid mapping FTLs have been proposed to overcome the limitations of
both page and block mapping FTLs, namely, the large memory requirement of
page mapping and the inflexibility of block mapping. In FAST FTL [4], one of
the popular hybrid mapping FTLs, flash memory blocks are logically partitioned
into a data area and a log area. Blocks in a data area are managed by block-level
mapping, while blocks in a log area are done by page-level mapping. If there is
a data write request, the FAST scheme will write the data on clean pages at the
end of the log area which are managed by the page level address table. Thus, this
hybrid FTL scheme retains higher space utilization than the block level mapping
scheme and smaller table size than the page level mapping scheme. But, as in
the page mapping FTL scheme, every page write will change the page mapping
for the log area so that FAST also has the overhead to store, in addition to the
data page itself, the new page address mapping entry persistently for each write.
However, as will be described later, there is a unique opportunity in FAST FTL
for maintaining the page mapping information consistently with lower overhead.

2.2 Crash Recovery in FTLs

Many recovery mechanisms have been proposed to maintain the mapping infor-
mation, but those mechanisms should work with the upper software layer like
the file system. In the decoupled FTL, filesystem layer cannot access the FTL in-
ternal data structure like the page mapping table. On the other hand, except for
some paper like LTFTL[6] and PORCEI3], the FTL-specific recovery mechanism
has not been researched for the SSD’s decoupled FTL.

LTFTL [6] is a page mapping FTL with internal recovery scheme. LTFTL
keeps the changed address log at the RAM and checkpoints the logs by a unit
page. In this scheme, LTFTL can restore not only the latest address table but
also other previous address tables through few page accesses. But LTFTL has to
merge the logs with the large address table and write the newly whole address
table at the mapping block, if the logs become over the log threshold. This
transaction affects the normal 1/O request performance because of their large-
size address table.

PORCE [3] only focused on the recovery scheme after the power-failure.
PORCE divided the power-failure problem into two situations; the normal write
operation consistency and the reclaiming operation consistency. Especially in the
reclaiming operation, PORCE writes the reclaiming-start-log before the reclaim-
ing operation and the reclaiming-commit-log after the all reclaiming operation
at the transaction log area. But FAST FTL always performs their merge oper-
ation with many associated data block, and each associated block state will be
changed every merging step. Thus reclaiming operation of FAST FTL should be
traceable and robust against the repetitive recovery-failure, but PORCE did not
mentioned about this.

3 Crash Recovery in FAST FTL

3.1 Overview of FAST FTL

FAST FTL is one of the hybrid FTL schemes which was originally designed to
improve the performance of small random write. In FAST FTL, flash memory
blocks are logically partitioned to a data area and a log area. Blocks in a data
area are managed by block-level mapping, while blocks in a log area are done by
page-level mapping. Since no single log block is tied up with any particular data
block due to its full associativity, any page update can be done to any clean page
in any one of the log blocks. This improves the block utilization significantly and
avoids the log block trashing problem as well.

By the way, every write in a log area will change the page-level mapping en-
try for the logical page being written, and thus each write in a log area requires
at least one additional flash write for storing the page-level mapping informa-
tion persistently, thus guaranteeing the consistency of the page-level mapping
information against the power-off failure. This additional flash write for storing
mapping information will degrade the performance by half. Thus, a more clever

solution for crash recovery in FAST is necessary, and we propose a checkpoint-
based recovery scheme for FAST FTL.

One concern which makes the recovery in FAST FTL more complex is the
full merge operation in FTL. When the log area is full, a log block is chosen
as a victim for reclamation and the victim log block may contain valid pages
belonging to many different data blocks. In FAST, log blocks are managed in a
FIFO queue, and thus the oldest log block is chosen as a victim block. Those
valid pages should then be merged with their corresponding data blocks. This
type of merge operation is called a full merge, and is usually very expensive as
it involves performing merge operations as many as valid pages in the victim
log block. Please see [5] for details. Besides its performance overhead, we should
note that one victim log block in FAST may incur many merges, and a crash can
occur at any point while handling them. For each block being merged, we need to
change its block mapping information and save it in flash memory, too. That is,
the reclamation of a victim block can change the block mapping information of
several blocks being merged, and the crash between the multiple merges makes
it hard to achieve the atomic propagation of the block-level mapping changes
from multiple full merges. We will revisit this issue later.

Before closing this subsection, let us explain two assumptions we make in
this paper. First, both the free block list (i.e. the list of free flash blocks) and
the associated-data-block list (i.e. the list of data blocks to be merged when a
victim log block is reclaimed) are maintained as sorted lists. Second, the victim
log block should be returned to the free block list, instead of being reused as the
new log block immediately after reclamation.

3.2 Revised FAST FTL Architecture

In order to support crash recovery functionality to FAST FTL, we need to revise
the previous FAST architecture a little, which is described in this subsection.

Address-mapping tables. FAST FTL maintains two address-mapping ta-
bles, a block mapping table for data blocks and a page mapping table for log
blocks. For merge correctness, two new columns, MT(Merge Timestamp) and
VT (Victim Timestamp) are added to the two mapping tables, respectively, which
will be handled in details in Section 3.3.

Logging areas on flash memory. For the fast recovery from system failures,
address mapping information in main memory has to be persistently stored
somewhere in flash memory. This is why two logging areas in the front of flash
memory exist in Fig. 1. The block mapping logging area stores two classes of
‘block mapping’ information for the data and log blocks. First, whenever the
block mapping table for data blocks is updated due to page writes or merge
operations, the whole table is stored in the block mapping logging area. This
logging cost is not so expensive since such a update does not happen frequently.
Second, the recovery module in FAST FTL is required to know what physical

E Block Mapping Table Page Mapping Table
] LBNPBN|MT PBN[VT|[LSNList
E 0| 30(10 500 | 10 |{4. 50, 80, 119
E 1(31|13 501 | 11 |5, 201, 202. 253
! 2325 502 12 |6, 97, 108, 301
] 0 ~ - 0 =
] . 4 .
] Pt L]
' Page Mapping
' Logging Area” ~y Log Blocks
Block - - Data Blocks
Mapping E16]
Logging oy (XX X}
Area @ [
,// :4\ h k m L"'T""I L""I""I I"|'I
L o Checkpoint ! ! !
Usdess ' i :

\2
1 Not yet checkpointed

* LBN: Logica Block Number « VT: Victim Timestamp
» PBN: Physical Block Number « MT: Merge Timestamp

Fig. 1. Revised FAST FTL Architecture

block each of the log blocks are mapped to before the crash, so this information
should be stored onto flash memory whenever address mapping between log
blocks and physical blocks changes. Of course, the frequency of these changes is
not so high, and thus the cost is low.

Next, let us explain how to use the page mapping logging area. The rest of
address mapping information, that is, the information of what logical pages each
of the log blocks buffers has to be saved up somewhere of flash memory. In fact,
the size of this information is very large, therefore it is too expensive to store this
information wholly whenever the page mapping table is updated. This is why
we devise a new logging technique to store this-like page mapping information
efficiently, which is described in details in Section 3.3.

3.3 Logging in FAST FTL

We described why the page mapping logging area on flash memory is needed
in Section 3.2. Here, we explain how the page mapping information is stored
and managed in this logging area. It is not efficient to store the whole data of
the page mapping table for log blocks every update. Instead, we employ the
checkpoint technique, which will acts as follows. As page updates from the file
system are done onto the log blocks, the page mapping table for log blocks will
grow. The moment the first N log blocks are exhausted, the first N entries of
the page mapping table are output into the page mapping logging area. Here
N determines the number of these entries whose total size approximates to the
page size. In this way, the next N entries will be written into the page mapping
logging area. This log containing N entries is called ‘FASTcheck’. If later the log

block buffer becomes full, the first victim log block selection has to be performed.
Accordingly, the entry information in the first FASTcheck corresponding to this
victim log block becomes invalid and afterwards, if the first N victim selections
are done, the first FASTcheck in the page mapping logging area becomes invalid
completely. If the logging area becomes full by writing a lot of FASTchecks, a
new free block is allocated for the new page mapping logging block and then all
valid FASTchecks of the old logging block are copied into the new logging block.
The old logging block is returned to e.g., the garbage collector.

Since checkpoints are performed per N log blocks, that is, N entries of the
page mapping table, the entire page mapping table cannot be persistently stored
in flash memory. If a system failure occurs at the time when the last N entries of
the page mapping table is not yet accumulated after the last checkpoint is done,
this uncheckpointed entries has to be recovered by scanning the corresponding
log blocks and extracting their metadata. We will handle this-like recovery issue
in the next subsection.

3.4 Recovery in FAST FTL

Prior to the description of crash recovery in FAST, we first assume that a crash
never happens while FAST performs a full merge operation after a victim log
block is selected. It is noted that a full merge operation consists of multiple indi-
vidual merge operations. If a crash occurs during full merge, consistency between
the block mapping table and the page mapping table cannot be guaranteed and
therefore we have to make more efforts to solve this problem. So we plan to han-
dle this complicated issue in the future work. The crash recovery is processed
as follows. First, we recover the block mapping table for data blocks from the
block mapping logging area and then block mapping information belonging to
the page mapping table for log blocks. It is noted that the page mapping table
consists of block and page mapping information. Next, we recover the rest of the
page mapping table, that is, page mapping information by reading only valid
FASTchecks from the page mapping logging area. As mentioned in Section 3.3,
the uncheckpointed entries of the page mapping table do not exist in the page
mapping logging area. Accordingly, we have to scan log blocks corresponding to
these entries and then extracting page mapping data from them. As a result, we
can get a complete page mapping table for log blocks.

3.5 Reforming the Merge Operation in FAST FTL

During crash recovery, we must make two block and page mapping tables equiv-
alent with ones just before the crash occurs. However, for the page mapping
table, the recovered table may be different from the last table in main memory.
This is because in-memory page mapping table can be updated due to full merge
operations for victim log blocks even after a series of checkpoints are performed.
The problem resulting from this-like difference is performing merge operations
for ‘invalid’ pages in the victim log blocks. In [4], the merge operation gener-
ates a new data block, followed by setting all pages joining in this generation

LBN|PBN|MT PBN|VT LSN List
0| 30 |10 520 [20| iv,iv,iv, iv
1 52 |20 501 | 11| iv, 201, 202, 253
2132115 iv.invalid | 502 | 12 | iv, 97, 108, 301

(a) Merge operation before the crash.

LBN[PBN]MT PBN[VT] LsNList
0] 30 (10 520 | 20 |iv,iv, iv, iv
1[52(20 501 | 11/ 5,1201, 202, 253
2 | 3215 iv: invalid | 502 | 12] 6,97, 108, 301

(b) Merge operation after the crash.

Fig. 2. Reforming the Merge Operation in FAST FTL

with invalid on the page mapping table for log blocks. However, these invalid
marks cannot be reflected on already checkpointed entries of the page mapping
table. So, there cannot exist invalid marks in the newly recovered page map-
ping table after crash recovery, resulting in useless merges on invalid pages. In
order to prevent useless merges like this, we try to reform the merge operation
in FAST FTL by devising two terms, VT (Victim Timestamp) and MT(Merge
Timestamp). Each log block’s VT in the page mapping table points to its turn
in which it will be a victim log block, while each data block’s MT in the block
mapping table indicates which merge generated it. We define that MT is VT
plus the number of log blocks. For example, in Fig. 1, VT=10 of the first entry
in the page mapping table indicates that current log block will be tenth victim
later. MT=13 of the second entry in the block mapping table means that the
data block of PBN=30 was generated due to the third victim, since the number
of log blocks is ten and so VT is three.

Now let us reform merge operations occurring after crash recovery by us-
ing VT and MT. Fig. 2(a) shows that before a crash occurs, the log block of
PBN=500 in Fig. 1 was chosen as a victim, next a full merge operation was done
for this victim log block, and finally a new log block was allocated from the free
block list. The full merge operation consists of multiple individual merges, so in
Fig. 1, the pages of LSN=4, 5, and 6 in all log blocks will be used in generating
a new data block of LBN=1(assuming that a block has four page). Accordingly,
the data block of LBN=1 in Fig. 1 allocate a new physical block of PBN=52 and
also MT changes from 13 to 20, because VT of the victim log block is 10. In the
page mapping table, invalid marks are made for the participants for the new data
block. Let us assume that after Fig. 2(a), a system failure happened. According
to our recovery strategy, two tables of Fig. 2(b) will be made. However, the page
mapping table of Fig. 2(b) differs in that of Fig. 2(a). This is because invalid
marks did not be reflected on the former. In case that the log block of PBN=501
in Fig. 2(b) will be selected as a victim later, useless data block will be created
for LSN=5 and 6 in all log blocks. This problem can be solved by using VT and

MT. Before create a new data block by performing individual merge operation
like LSN=5 and 6 of Fig. 2(b), we first find the data block with the same LBN
in the block mapping table(LBN=1 in Fig. 2(a)) and then compare MT with
VT. If MT is larger than VT, then we skip current individual merge operation,
since this indicates that some victim already made current data block for same
LSNs.

4 Evaluation

Runtime Overhead for Mapping Management. In this section, we evalu-
ate the mapping management overhead using the total write overhead between
LTFTL based FAST scheme and our FAST scheme under the OLTP workload.

In the case of LTFTL scheme in the FAST FTL, each Ny;—j04 logs will be
written as an mapping log entry. Moreover, if the total log size exceeds the
Nit_threshold, FTL must store the whole mapping table consisted with Nygpe
pages. Therefore, Costprrrr, the write overhead of LTFTL based FAST, is as
follow:

N, N
COStLTFTL = log + \‘ log

Niable 1
Nltflog J % Neabl ()

Nit—threshold
If the FAST FTL uses FASTcheck scheme, each Ni,tes+ merge operation will

write a page as the Njgtest block’s mapping table in the FASTcheck block. In

this case, Costp asTcheck, the write overhead cost using FASTcheck, is hear:

Nmer €
. (2)

CostpasTcheck =
Nlatest

From this notation, we calculated the mapping management cost between
the LTFTL based FAST and FASTcheck based FAST. Under the total 3,594,850
write operation, Costyrrpry, was 30,544 and CostpasTeheck Was 3,511.

Recovery Overhead. At the recovery phase, any FTL scheme must read the
address table and its changed table log. In our approach, FTL has two phase read
operation as we mentioned at Section 3.4. The Nygpe FASTcheck area pages must
be read at the first read phase, and average (Njgiest X Npage) /2 pages has to be
read for the uncheckpointed information. The LTFTL approach also read Nggpie
table pages, (Ni—threshoid/Nit—10g) /2 log pages, and Ni;_;0/2 pages’ spare area
at the recovery time. However the Ny ¢hreashoia Would be increased if the log
area size became large, our approach has suitable read count for the recovery
operation.

5 Conclusion

In this paper, we proposed an efficient power-off recovery scheme for a hybrid
FTL scheme, FAST. Instead of writing the new address mapping information for

every page write operation, our FASTcheck scheme checkpoints the address map-
ping information periodically, and can recover the mapping information which is
generated since the last checkpoint. As shown in Section 4, the saving in writing
the metadata during the normal mode in FASTcheck far outweighs.

We plan three future works. The first one is to implement our scheme in real

boards and to verify its efficient. The second is to optimize the excessive read
overhead in incremental recovery phase. And finally, we will investigate whether
our scheme can be applicable to other FTLs.

References

1. A. Ban. Flash file system, April 4 1995. US Patent 5,404,485.

2. A. Ban. Flash file system optimized for page-mode flash technologies, August 10
1999. US Patent 5,937,425.

3. Tae-Sun Chung, Myungho Lee, Yeonseung Ryu, and Kangsun Lee. PORCE: An
efficient power off recovery scheme for flash memory. J. Syst. Archit., 54(10):935—
943, 2008.

4. Jesung Kim, Jong Min Kim, S.H. Noh, Sang Lyul Min, and Yookun Cho. A space-
efficient flash translation layer for CompactFlash systems. Consumer Electronics,
IEEFE Transactions on, 48(2):366 —375, May 2002.

5. Sang-Won Lee, Dong-Joo Park, Tae-Sun Chung, Dong-Ho Lee, Sangwon Park, and
Ha-Joo Song. A log buffer-based flash translation layer using fully-associative sector
translation. ACM Trans. Embed. Comput. Syst., 6(3):18, 2007.

6. K. Sun, S. Baek, J. Choi, D. Lee, S.H. Noh, and S.L.. Min. LTFTL: lightweight

time-shift flash translation layer for flash memory based embedded storage. In
Proceedings of the 8th ACM international conference on Embedded software, pages
51-58. ACM, 2008.

