
 

Specification of Embedded Control Systems Behaviour 
Using Actor Interface Automata  

Christo Angelov, Feng Zhou, Krzysztof Sierszecki 

Mads Clausen Institute for Product Innovation 
University of Southern Denmark 

Alsion 2, 6400 Soenderborg, Denmark 
{angelov, zhou, ksi}@mci.sdu.dk 

Abstract. Distributed Timed Multitasking (DTM) is a model of computation 
describing the operation of hard real-time embedded control systems. With this 
model, an application is conceived as a network of distributed embedded actors 
that communicate with one another by exchanging labeled messages (signals), 
independent of their physical allocation.  Input and output signals are 
exchanged with the controlled plant at precisely specified time instants, which 
provides for a constant delay from sampling to actuation and the elimination of 
I/O jitter. The paper presents an operational specification of DTM in terms of 
actor interface automata, whereby a distributed control system is modeled as a 
set of communicating interface automata executing distributed transactions. The 
above modeling technique has implications for system design, since interface 
automata can be used as design models that can be implemented as application 
or operating system components. It has also implications for system analysis, 
since actor interface automata are essentially timed automata that can be used as 
analysis models in model checking tools and simulation environments. 
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1 Introduction 

Control-theoretic models of computer control systems assume a synchronous pattern of 
computer-plant interaction, featuring sampling at a constant frequency and 
synchronism, i.e. zero delay between sampling and actuation. These assumptions have 
been adopted in the perfect synchronous model of computation used in a number of 
programming languages and environments, such as LUSTRE, SIGNAL and ESTEREL 
[1]. 

In practice, the perfect synchronous model can only be approximated, because the 
control program has non-zero execution time C and response time R, R = C + I, where 
I denotes the extra time due to interference (preemption) from higher priority tasks, 
interrupts, etc. However, such an approximation is valid only when the control 



 

computer is infinitely fast, or at least much faster than the plant controlled, such that its 
response time is orders of magnitude smaller than the sampling period. 

That is obviously not the case when task response time is of the same order as its 
period. In that case, the synchrony hypothesis is not valid – there is no longer an 
effective zero delay between sampling and actuation. Consequently, the real system 
may exhibit a closed-loop behaviour being substantially different from the modeled 
one. This requires a re-design of the control system taking into account the 
computational delay. Unfortunately, the task response time R varies with different 
invocations because the interference due to higher priority tasks I fluctuates with 
different task phasings. That is why it is impossible to precisely model the influence 
of the computational delay in the control-theoretic model of the real system.  

The variation of response time is ultimately demonstrated as input and output jitter, 
which is detrimental to control system behaviour. Its effect is substantial for control 
loops having small sampling time that is comparable to the task response time R. 
Theoretical and experimental investigations have shown that I/O jitter may result in 
poor quality of control and even instability [2].  

The above problems can be dealt with by adopting a modified model, i.e. the 
clocked synchronous model of computation [3], which is characterized by a constant, 
non-zero delay from sampling to actuation (e.g. one-period delay). That is why it can 
be easily taken into account in the discrete-time continuous model of the control 
system (e.g. by using zero-order hold and unit delay blocks). In this way, the behaviour 
of the real system becomes identical to its modeled behaviour and I/O jitter is 
eliminated.  

This approach is popular among control engineers and has been recently adopted in 
a number of software frameworks, e.g. Giotto [5], which employs time-triggered tasks 
executing at harmonic frequencies, whose deadlines are equal to the corresponding 
periods.  

A general solution to the above problems is provided by a particular version of the 
clocked synchronous model known as Timed Multitasking [4], which can be used 
with both periodic time-driven, as well as aperiodic event-driven tasks. This model 
assumes that task I/O drivers are executed atomically at task release/deadline instants, 
whereas the task itself is executed in a dynamic scheduling environment.  In this way, 
task I/O jitter is effectively eliminated as long as the task comes to an end before its 
deadline, which is defined to be less than or equal to period. On the other hand, Timed 
Multitasking provides for a constant delay from sampling to actuation, which can be 
taken into account in the discrete-time model of the closed-loop control system. 

Distributed Timed Multitasking (DTM) is a model of computation developed in the 
context of the COMDES framework [8]. It extends the original model to sets of 
application tasks (actors) executing transactions in single-computer or distributed 
real-time environments. A denotational specification of that model is given in [9], 
where system operation is described by means of composite functions specifying 
signal transformations from input signals to output signals, taking into account the 
constant delay from sampling to actuation. However, a precise operational 
specification is still missing. 

 The purpose of this paper is to develop an operational specification of distributed 
control system behaviour in terms of interface automata [7]. These can be used to 
formally specify actor and system behaviour under DTM, which is a prerequisite for 



 

deriving accurate analysis models. Interface automata can also be used as design 
models needed to develop an operating system environment supporting DTM. 

The rest of the paper is structured as follows: Section 2 presents an informal 
introduction of Distributed Timed Multitasking focusing on the behaviour of system 
actors during the execution of phase-aligned transactions. Section 3 presents interface 
automata modelling the behaviour and interaction of embedded actors executing 
distributed transactions with hard deadlines. Section 4 discusses the implementation 
of interface automata as operating system components incorporated in the event 
management subsystem of a real-time kernel. Section 5 presents related research. The 
last section summarizes the main features of the proposed model and its implications. 

2 Distributed Timed Multitasking: an Informal Introduction 

Distributed Timed Multitasking (DTM) is a model of computation, which has been 
developed in the context of COMDES – a component-based framework for hard real-
time embedded control systems [8]. In this framework, an embedded system is 
conceived as a network of active objects (actors) that communicate with one another 
via labelled state messages (signals) encapsulating process variables, such as speed, 
pressure, temperature, etc. (see e.g. Fig. 1).  DTM extends Timed Multitasking to 
distributed real-time systems in the context of communicating actors and transparent 
signal-based communication [9]. 

 An actor consists of a signal processing unit (SPU) operating in conjunction with 
I/O latches, which are composed of input and output signal drivers, respectively [9]. 
The input latch is used to receive incoming signals and decompose them into local 
variables that are processed by the SPU. The output latch is used to compose outgoing 
signals from local variables produced by the SPU and broadcast them to potential 
receivers. This is accomplished by means of communication primitives that make it 
possible to transparently broadcast and receive signals, independent of the allocation of 
sender and receiver actors on network nodes. Physical I/O signals are treated in a 
similar manner but in this case, the latches are used to exchange physical signals with 
the environment at precisely specified time instants.  

A control actor is mapped onto a real-time task having three parts: task input, task 
body and task output, implementing the input latch, SPU and output latch, respectively. 
The task body is executed in a dynamic priority-driven scheduling environment. It is 
released by the event that triggers the actor for execution, i.e. a periodic timing event, 
external interrupt or a message arrival event. During execution it may be preempted by 
other higher-priority tasks running in the same node, and consequently – suffer from 
I/O jitter.   

Task input and output are relatively short pieces of code whose execution time is 
orders of magnitude smaller than the execution time of the actor task, which is typical 
for control applications. They are executed atomically in logically zero time, in 
separation from the task body (split-phase task execution). Specifically, task input is 
executed when the actor task is released, and task output – when the task deadline 
arrives (see Fig. 2). Consequently, task I/O jitter is effectively eliminated as long as the 
task is schedulable and comes to an end before its deadline.  



 

When a deadline is not specified, the task output is executed immediately after the 
task is finished. That is e.g., the case with the intermediate tasks of phase-aligned 
transactions, which have to generate output signals as soon as they are computed, 
whereas an end-to-end deadline is imposed on the entire task sequence executing the 
distributed transaction (see below). 

Monitor

Control unit

Sensor

Sensor unit

Actuator

Actuator unit

Process 

variable

Control

signal

Controller SPU

Input latch Output latch

Controller

 
Fig. 1. COMDES model of a distributed embedded system 
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Fig. 2. Split-phase execution of actor under Distributed Timed Multitasking 

 
The above techniques can be extended to task sets executing transactions in single-

computer or distributed environments. These are treated in the same manner due to the 
transparent nature of signal-based communication, e.g. the phased-aligned transaction 
shown in Fig. 3, involving the actors Sensor (S), Controller (C) and Actuator (A) 
introduced in Fig. 1. This transaction is triggered by a periodic timing event, i.e. a 
synchronization (sync) message denoting the initial instant of the transaction period T, 
with deadline D ≤ T.  

In principle, such transactions suffer from considerable I/O jitter. That is due to task 
release/termination jitter as well as communication jitter, which is accumulated and 
ultimately – inherited by the terminal actor. However, in our case input and output 
signals are generated at transaction start and deadline instants, resulting in constant 
response time and the effective elimination of I/O jitter.  

This resolves the main problem with phase-aligned transactions, which are 
otherwise simple to implement and commonly used in distributed applications. 
Transactions involving periodic tasks with the same or harmonic periods are also 
common for many applications and frameworks, e.g. Giotto [5]. In such transactions 
task deadlines are usually equal to task periods. 
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Fig. 3. Jitter-free execution of distributed transactions 

The DTM model of computation is presently supported by the HARTEXμ kernel 
[10]. It has been experimentally validated in a number of computer control 
experiments, involving physical and computer models of plants such as DC motor, 
production cell, steam boiler, turntable, etc., as well as an industrial case study – a 
medical ventilator control system featuring fast, jitter-sensitive control loops with 
millisecond-range periods and deadlines. 

3 Modelling Actor Behaviour with Interface Automata 

Interface automata are state machine models used to describe the timed input/output 
behaviour of software components [7]. Specifically, they can be used to precisely 
describe the interaction between components in terms of communication protocols 
implemented by the interfaces of the interacting components, e.g. sequences of 
method invocations of the corresponding operational interfaces, or message 
exchanges involving interacting port-based interfaces, etc. In the context of DTM, 
interface automata can be used to formally specify actor behaviour and interaction, 
i.e. the behaviour of system actors executing a distributed transaction and 
communicating with one another via labelled state messages (signals). 

The interface automaton can be viewed as an operational component which 
conducts the execution of a system actor. Accordingly, the actor can be modeled as a 
composition of input latch, signal processing unit (SPU) and output latch, which are 
controlled by the interface automaton (see Fig. 4). This model emphasizes separation 
of concerns: the SPU implements the functional behaviour of the actor in separation 
from its timed I/O behaviour, which is modeled by the interface automaton. 

The interface automaton is enabled for execution by an external start event 
generated by another actor, and is subsequently triggered by periodically arriving tick 
events that are also used to update a timer measuring the corresponding period and/or 
deadline intervals. It generates control signals get input and start in order to activate 
the input latch and then start the SPU, which generates a ready signal when the 
computation is finished. Finally, the interface automaton generates the signal 



 

produce output in order to activate the output latch and generate the corresponding 
output signals. In case of deadline violation, it generates the corresponding exception 
signal. 

This kind of behaviour can be formally specified in terms of periodically executed, 
event-driven Mealy machines whose transitions are labeled with the corresponding 
< transition trigger/control signal > pairs. It is possible to define various types of actor 
interface automata, depending on the start event used to enable the actor and the type 
of transaction it is involved in. The following discussion assumes application 
scenarios featuring periodic tasks with harmonic periods or phase-aligned transactions 
that are common for distributed embedded systems. These can be implemented with 
several kinds of actor, as follows: 

 Periodic time-driven actor with deadline less than or equal to period 
 Event-driven actor triggered by either an external event or a message arrival 

event (e.g. a sync message, application message) – with or without deadline 
 Event-driven actor triggered by a message arrival event – with deadline 

inherited from the transaction deadline (terminal transaction actor)   
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.  Control actor modelled as a composition of signal-processing components controlled by 
an interface automaton 

The interface automaton of a periodic time-driven actor with deadline less than 
period is shown in Fig 5-a. When started, the interface automaton generates the 
control signals needed to get input signals and start the SPU, starts a timer that will be 
used to measure both deadline and period, and makes a transition to state a1 which 
will be maintained while current time is less than deadline. When t = D, a control 
signal is generated in order to produce output signals, provided that the SPU has 
finished computation (ready = 1), and a transition to state a2 is made, which will be 
maintained while current time is less than period. When t = T, the interface automaton 
generates the signals needed to get input and start the SPU, restarts the timer and goes 
back to state a1 (waiting until t = D). This mode of operation will be repeated over and 
over again up until a stop signal is issued by an external actor that will force a 
transition back to the initial state a0. A transition to that state is also enforced in the 
case of deadline violation, when the interface automaton is in state a1 and t = D but 
the SPU has not finished computation (ready = 0).  
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a) with deadline less than period          b) with deadline equal to period 

Fig. 5.  Interface automata of time-driven actors 

Fig. 5-b shows the interface automaton of a periodic time-driven actor with 
deadline equal to period. Such actors are typically used in control applications 
featuring one-period delay from sampling to actuation as well as multi-rate control 
systems. The logic of the interface automaton is similar to the one discussed above, 
the only difference being the existence of a single wait state, which is maintained 
while t < T. When t = T, the interface automaton generates the control signals needed 
to produce output, get input, start SPU and restart timer, and goes back to a1 waiting 
till the end of the period, and so on, until stopped. 

 
 

 
 
 
 
 
 
 
 
 

        

a) with deadline greater than zero              b) with deadline equal to zero (no deadline) 

Fig. 6.  Interface automata of event-driven actors 

Fig. 6 shows interface automata for event-driven actors with and without deadline. 
The automaton of Fig. 6-a is enabled by the arrival of an external start event (e.g. 
external event, sync message or another message arrival event), whereupon it 
generates the control signals needed to get input, start SPU and start a timer measuring 
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deadline. When t = D the automaton checks the ready feedback signal and generates 
the control signal needed to produce output (ready = 1) or a deadline violation 
exception (ready = 0).  

An event-driven actor may not have a deadline, e.g. a non-terminal actor of a 
phase-aligned transaction that generates output signals immediately after its 
computation is finished (see Fig. 6-b). It can be shown that such an actor has a 
synchronous execution semantics (D = 0), whereas the terminal actor has a clocked 
synchronous semantics (D = Dtrans), i.e. it inherits the end-to-end deadline of the 
transaction, such that its output signals are generated at the transaction deadline 
instant [9]. Fig. 7 shows an interface automaton describing the behaviour of a terminal 
transaction actor. The latter is triggered by a message arrival event but its deadline 
timer is started by the global start event when the transaction is released (see e.g. 
Fig. 3). 
 
  
 
 
 
 
 
 
 
  
 
 
 

Fig. 7.  Interface automaton for a terminal transaction actor 

The presented modeling technique has implications for system design, since 
interface automata can be used as design models for operational components 
conducting the execution of system actors. It has also implications for system 
verification, since interface automata are essentially timed automata that can be used 
as analysis models for verification tools like e.g., Uppaal or simulation environments 
such as Simulink. In particular, interface automata can be used to develop analysis 
models that preserve the timed multitasking semantics of the design models. In that 
case, the actor is modelled by a pair consisting of an interface automaton and a 
functional automaton (or Simulink subsystem) modelling the behaviour of the SPU. 
Fig. 8 depicts such a construct using Uppaal notations. 

The interface automaton is synchronized with another automaton (e.g. a sync 
message generator or a preceding actor) via the start broadcast channel, whereas the 
interface and functional automata synchronize with each other by means of the start 
SPU channel and the ready feedback signal. The functional automaton has two states -  
initial (a0) and executing (a1), whereby the transition from a0 to a1 is labelled with one 
or more functions from input to output signals, specifying the signal transformations 
performed by the SPU. State a1 is a timed state with an invariant t < R, where t is the 
clock measuring task execution time and R is the task response time, which can be 
determined through response-time analysis. It is exited when t = R, whereby the 
feedback signal finished is set to true. 
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Fig. 8.  Uppaal model of event-driven actor with deadline 

The timed automata shown in Fig. 8 represent an event-driven actor with deadline, 
which can be triggered by external events such as global timing events, message 
arrival events, etc., modelled by the synchronization channel start. In a phase-aligned 
transaction, the corresponding signal will be generated by a predecessor actor via its 
output synchronization channel, which will be activated when the predecessor output 
is produced. In that case data can be exchanged via a shared data structure.  

Similar models can be also developed for the other types of interface automata 
discussed in this section. Ultimately, the presented technique can be used to transform 
a system design model into a consistent analysis model accepted by verification tools, 
such as Uppaal. In particular, each actor is modelled as a pair of interface and 
functional automata, and actor interaction – as broadcast communication through 
shared data structures used by the corresponding interface automata, as well as 
broadcast synchronization channels modelling message arrival events.  

4 Implementation Aspects of Interface Automata 

The conceptual actor model of Fig. 4 can be used as a design model, whereby the 
interface automaton is implemented as an application component (state machine) 
interacting with the input latch, signal-processing unit and output latch. The interface 
automaton can also be viewed as an operating system component, which processes 
relevant events in accordance with the corresponding behavioural pattern, and 
conducts the execution of the actor by invoking the necessary kernel primitives. This 
interaction is explained below in more detail, in the context of the HARTEXμ kernel 
[10]. 

Interface automata can be implemented as service routines that are invoked by the 
kernel Event Manager while processing the corresponding timing and external events, 
whereas the signal-processing units are mapped onto actor tasks (task bodies). 
Likewise, I/O latches are implemented as task interface routines – task I/O, which are 
executed in separation from the main functions of the corresponding tasks. 

In that case the interaction between the interface automaton and the actor task is 
accomplished by means of the corresponding kernel primitives (see Fig. 9). The 
primitive release(task) is used to implement the control actions get input and 



 

start SPU of the conceptual model. Specifically, it is used to register a task - its input 
and main body for execution in the corresponding kernel data structures, i.e. Boolean 
vectors that are used to emulate system queues [10]. Likewise, the primitive 
finish(task) is used to implement the action produce output by registering the task 
output in the corresponding kernel vector. 

 
 
 
 
 
 
 
 

 

Fig. 9.  Interaction between actor interface automaton and actor task 

The Event Manager may be invoked by interrupt service routines processing 
external or tick interrupts. When activated, it processes all interface automata that are 
enabled for execution, which may result in one more newly released tasks having 
higher priority than the currently running task. Therefore, the execution of the Event 
Manager ends up with the invocation of the Task Manager primitive preempt(), which 
executes atomically all registered task outputs and then task inputs in order to observe 
the precedence relation between producer and consumer actors exchanging signals at 
the particular time instant; it proceeds further by selecting the highest-priority task to 
execute from among all registered tasks and the currently running task, which may be 
preempted or continued depending on task priorities. A high-priority task will be 
started immediately, whereas a lower priority task will wait for its turn to execute and 
will be eventually started when the previously running and/or registered higher 
priority tasks come to an end. The execution of a running task is finished by returning 
to the Task Manager, which resets its registration bit, thereby generating the feedback 
signal ready. 

 
 
 
 
 
 
 
 

 

Fig. 10.  DTM kernel architecture 
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The presented mechanisms constitute a new solution, which allows for very fast 
and uniform treatment of events and tasks in the context of a real-time kernel 
consisting of three main subsystems: Event Manager incorporating actor interface 
automata, Task Manager scheduling the execution of actor tasks, and a 
Communication Bus used to transparently exchange signals between communicating 
actor tasks via broadcast event notification and communication primitives (see 
Fig. 10). More details about the implementation of these and other kernel primitives 
can be found in [10]. 

5 Related Research 

Distributed Timed Multitasking has been inspired by the original Timed Multitasking 
model [4] and is similar to the logical execution time (LET) model adopted in the 
xGiotto language [6]. However, both of these models employ port-based 
communication between actors, whereas DTM employs broadcast communication 
using labeled state messages (signals). This is a flexible solution, which rules out 
artifacts such as ports, mailboxes, operational interfaces with call-return semantics, 
etc., thus providing for reconfigurable and truly open distributed embedded systems. 

The adopted communication mechanism supports transparent communication and is 
characterized by complete separation of computation and communication, since signal 
drivers are executed in separation from actor tasks and from each other. That is not the 
case with port-based objects, where ports are usually defined as communication objects 
whose methods are invoked within task I/O drivers in a conventional call-return 
fashion, much in the same way as operational interfaces, see e.g. [4]. Consequently, the 
communication pattern is „hardwired‟ in the code of I/O drivers and cannot be 
reconfigured without reprogramming. Furthermore, in that implementation ports are 
conceived as shared data structures, which are not suitable for distributed applications. 

DTM has certain similarities with the models of computation used in synchronous 
languages [1]. At the same time, there are some notable differences, and in particular:   

 True actor-level concurrency vs. conceptual concurrency, which is „compiled 
away‟ during the translation of synchronous programs 

 Constant non-zero reaction time vs. instantaneous (zero-time) reaction 
assumed by perfectly synchronous systems. 

The last feature facilitates the engineering of distributed systems and eliminates 
major problems related to fixpoints, instantaneous loops, etc. Furthermore, the 
synchronous model does not address the problem of I/O jitter because of the very 
nature of the synchrony hypothesis, whereas it is practically eliminated with DTM due 
to the constant delay from sampling to actuation inherent to that model. 

6 Conclusion 

The paper presents an operational specification of Distributed Timed Multitasking in 
terms of actor interface automata. This modeling technique has implications for 



 

system design, since interface automata can be used as design models implemented as 
application or operating system components. It has also implications for system 
verification, since interface automata are essentially timed automata that can be easily 
transformed into analysis models used in model-checking tools like Uppaal or 
simulation environments such as Simulink. 

Interface automata can be used to efficiently implement the event management 
subsystem of a DTM kernel, which allows for fast and uniform treatment of events 
and tasks in an operational environment consisting of three main subsystems: Event 
Manager incorporating actor interface automata, Task Manager scheduling the 
execution of actor tasks, and a Communication Bus used to transparently exchange 
labeled messages (signals) between communicating actor tasks. 

This architecture has been used to implement the latest version of the HARTEXμ 
kernel. Research is now going on, aimed at a hardware implementation of the Event 
Manager and eventually – the entire kernel, with application tasks running in the soft 
cores of a multi-core FPGA chip.  
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