

Specification of Embedded Control Systems Behaviour
Using Actor Interface Automata

Christo Angelov, Feng Zhou, Krzysztof Sierszecki

Mads Clausen Institute for Product Innovation
University of Southern Denmark

Alsion 2, 6400 Soenderborg, Denmark
{angelov, zhou, ksi}@mci.sdu.dk

Abstract. Distributed Timed Multitasking (DTM) is a model of computation
describing the operation of hard real-time embedded control systems. With this
model, an application is conceived as a network of distributed embedded actors
that communicate with one another by exchanging labeled messages (signals),
independent of their physical allocation. Input and output signals are
exchanged with the controlled plant at precisely specified time instants, which
provides for a constant delay from sampling to actuation and the elimination of
I/O jitter. The paper presents an operational specification of DTM in terms of
actor interface automata, whereby a distributed control system is modeled as a
set of communicating interface automata executing distributed transactions. The
above modeling technique has implications for system design, since interface
automata can be used as design models that can be implemented as application
or operating system components. It has also implications for system analysis,
since actor interface automata are essentially timed automata that can be used as
analysis models in model checking tools and simulation environments.

Keywords: distributed control systems, component-based design of embedded
software, domain-specific frameworks, distributed timed multitasking, interface
automata

1 Introduction

Control-theoretic models of computer control systems assume a synchronous pattern of
computer-plant interaction, featuring sampling at a constant frequency and
synchronism, i.e. zero delay between sampling and actuation. These assumptions have
been adopted in the perfect synchronous model of computation used in a number of
programming languages and environments, such as LUSTRE, SIGNAL and ESTEREL
[1].

In practice, the perfect synchronous model can only be approximated, because the
control program has non-zero execution time C and response time R, R = C + I, where
I denotes the extra time due to interference (preemption) from higher priority tasks,
interrupts, etc. However, such an approximation is valid only when the control

computer is infinitely fast, or at least much faster than the plant controlled, such that its
response time is orders of magnitude smaller than the sampling period.

That is obviously not the case when task response time is of the same order as its
period. In that case, the synchrony hypothesis is not valid – there is no longer an
effective zero delay between sampling and actuation. Consequently, the real system
may exhibit a closed-loop behaviour being substantially different from the modeled
one. This requires a re-design of the control system taking into account the
computational delay. Unfortunately, the task response time R varies with different
invocations because the interference due to higher priority tasks I fluctuates with
different task phasings. That is why it is impossible to precisely model the influence
of the computational delay in the control-theoretic model of the real system.

The variation of response time is ultimately demonstrated as input and output jitter,
which is detrimental to control system behaviour. Its effect is substantial for control
loops having small sampling time that is comparable to the task response time R.
Theoretical and experimental investigations have shown that I/O jitter may result in
poor quality of control and even instability [2].

The above problems can be dealt with by adopting a modified model, i.e. the
clocked synchronous model of computation [3], which is characterized by a constant,
non-zero delay from sampling to actuation (e.g. one-period delay). That is why it can
be easily taken into account in the discrete-time continuous model of the control
system (e.g. by using zero-order hold and unit delay blocks). In this way, the behaviour
of the real system becomes identical to its modeled behaviour and I/O jitter is
eliminated.

This approach is popular among control engineers and has been recently adopted in
a number of software frameworks, e.g. Giotto [5], which employs time-triggered tasks
executing at harmonic frequencies, whose deadlines are equal to the corresponding
periods.

A general solution to the above problems is provided by a particular version of the
clocked synchronous model known as Timed Multitasking [4], which can be used
with both periodic time-driven, as well as aperiodic event-driven tasks. This model
assumes that task I/O drivers are executed atomically at task release/deadline instants,
whereas the task itself is executed in a dynamic scheduling environment. In this way,
task I/O jitter is effectively eliminated as long as the task comes to an end before its
deadline, which is defined to be less than or equal to period. On the other hand, Timed
Multitasking provides for a constant delay from sampling to actuation, which can be
taken into account in the discrete-time model of the closed-loop control system.

Distributed Timed Multitasking (DTM) is a model of computation developed in the
context of the COMDES framework [8]. It extends the original model to sets of
application tasks (actors) executing transactions in single-computer or distributed
real-time environments. A denotational specification of that model is given in [9],
where system operation is described by means of composite functions specifying
signal transformations from input signals to output signals, taking into account the
constant delay from sampling to actuation. However, a precise operational
specification is still missing.

 The purpose of this paper is to develop an operational specification of distributed
control system behaviour in terms of interface automata [7]. These can be used to
formally specify actor and system behaviour under DTM, which is a prerequisite for

deriving accurate analysis models. Interface automata can also be used as design
models needed to develop an operating system environment supporting DTM.

The rest of the paper is structured as follows: Section 2 presents an informal
introduction of Distributed Timed Multitasking focusing on the behaviour of system
actors during the execution of phase-aligned transactions. Section 3 presents interface
automata modelling the behaviour and interaction of embedded actors executing
distributed transactions with hard deadlines. Section 4 discusses the implementation
of interface automata as operating system components incorporated in the event
management subsystem of a real-time kernel. Section 5 presents related research. The
last section summarizes the main features of the proposed model and its implications.

2 Distributed Timed Multitasking: an Informal Introduction

Distributed Timed Multitasking (DTM) is a model of computation, which has been
developed in the context of COMDES – a component-based framework for hard real-
time embedded control systems [8]. In this framework, an embedded system is
conceived as a network of active objects (actors) that communicate with one another
via labelled state messages (signals) encapsulating process variables, such as speed,
pressure, temperature, etc. (see e.g. Fig. 1). DTM extends Timed Multitasking to
distributed real-time systems in the context of communicating actors and transparent
signal-based communication [9].

 An actor consists of a signal processing unit (SPU) operating in conjunction with
I/O latches, which are composed of input and output signal drivers, respectively [9].
The input latch is used to receive incoming signals and decompose them into local
variables that are processed by the SPU. The output latch is used to compose outgoing
signals from local variables produced by the SPU and broadcast them to potential
receivers. This is accomplished by means of communication primitives that make it
possible to transparently broadcast and receive signals, independent of the allocation of
sender and receiver actors on network nodes. Physical I/O signals are treated in a
similar manner but in this case, the latches are used to exchange physical signals with
the environment at precisely specified time instants.

A control actor is mapped onto a real-time task having three parts: task input, task
body and task output, implementing the input latch, SPU and output latch, respectively.
The task body is executed in a dynamic priority-driven scheduling environment. It is
released by the event that triggers the actor for execution, i.e. a periodic timing event,
external interrupt or a message arrival event. During execution it may be preempted by
other higher-priority tasks running in the same node, and consequently – suffer from
I/O jitter.

Task input and output are relatively short pieces of code whose execution time is
orders of magnitude smaller than the execution time of the actor task, which is typical
for control applications. They are executed atomically in logically zero time, in
separation from the task body (split-phase task execution). Specifically, task input is
executed when the actor task is released, and task output – when the task deadline
arrives (see Fig. 2). Consequently, task I/O jitter is effectively eliminated as long as the
task is schedulable and comes to an end before its deadline.

When a deadline is not specified, the task output is executed immediately after the
task is finished. That is e.g., the case with the intermediate tasks of phase-aligned
transactions, which have to generate output signals as soon as they are computed,
whereas an end-to-end deadline is imposed on the entire task sequence executing the
distributed transaction (see below).

Monitor

Control unit

Sensor

Sensor unit

Actuator

Actuator unit

Process

variable

Control

signal

Controller SPU

Input latch Output latch

Controller

Fig. 1. COMDES model of a distributed embedded system

Task input

Input signals

Task body

preemption
Task output

Output signals

jitter

Deadline

Fig. 2. Split-phase execution of actor under Distributed Timed Multitasking

The above techniques can be extended to task sets executing transactions in single-

computer or distributed environments. These are treated in the same manner due to the
transparent nature of signal-based communication, e.g. the phased-aligned transaction
shown in Fig. 3, involving the actors Sensor (S), Controller (C) and Actuator (A)
introduced in Fig. 1. This transaction is triggered by a periodic timing event, i.e. a
synchronization (sync) message denoting the initial instant of the transaction period T,
with deadline D ≤ T.

In principle, such transactions suffer from considerable I/O jitter. That is due to task
release/termination jitter as well as communication jitter, which is accumulated and
ultimately – inherited by the terminal actor. However, in our case input and output
signals are generated at transaction start and deadline instants, resulting in constant
response time and the effective elimination of I/O jitter.

This resolves the main problem with phase-aligned transactions, which are
otherwise simple to implement and commonly used in distributed applications.
Transactions involving periodic tasks with the same or harmonic periods are also
common for many applications and frameworks, e.g. Giotto [5]. In such transactions
task deadlines are usually equal to task periods.

ti
k to

k to
k+1ti

k+1

I/O

actuator

c → a

controller

s → c

sensor

sync

deadline event

message arrival event

T

D (D ≤ T)

Fig. 3. Jitter-free execution of distributed transactions

The DTM model of computation is presently supported by the HARTEXμ kernel
[10]. It has been experimentally validated in a number of computer control
experiments, involving physical and computer models of plants such as DC motor,
production cell, steam boiler, turntable, etc., as well as an industrial case study – a
medical ventilator control system featuring fast, jitter-sensitive control loops with
millisecond-range periods and deadlines.

3 Modelling Actor Behaviour with Interface Automata

Interface automata are state machine models used to describe the timed input/output
behaviour of software components [7]. Specifically, they can be used to precisely
describe the interaction between components in terms of communication protocols
implemented by the interfaces of the interacting components, e.g. sequences of
method invocations of the corresponding operational interfaces, or message
exchanges involving interacting port-based interfaces, etc. In the context of DTM,
interface automata can be used to formally specify actor behaviour and interaction,
i.e. the behaviour of system actors executing a distributed transaction and
communicating with one another via labelled state messages (signals).

The interface automaton can be viewed as an operational component which
conducts the execution of a system actor. Accordingly, the actor can be modeled as a
composition of input latch, signal processing unit (SPU) and output latch, which are
controlled by the interface automaton (see Fig. 4). This model emphasizes separation
of concerns: the SPU implements the functional behaviour of the actor in separation
from its timed I/O behaviour, which is modeled by the interface automaton.

The interface automaton is enabled for execution by an external start event
generated by another actor, and is subsequently triggered by periodically arriving tick
events that are also used to update a timer measuring the corresponding period and/or
deadline intervals. It generates control signals get input and start in order to activate
the input latch and then start the SPU, which generates a ready signal when the
computation is finished. Finally, the interface automaton generates the signal

produce output in order to activate the output latch and generate the corresponding
output signals. In case of deadline violation, it generates the corresponding exception
signal.

This kind of behaviour can be formally specified in terms of periodically executed,
event-driven Mealy machines whose transitions are labeled with the corresponding
< transition trigger/control signal > pairs. It is possible to define various types of actor
interface automata, depending on the start event used to enable the actor and the type
of transaction it is involved in. The following discussion assumes application
scenarios featuring periodic tasks with harmonic periods or phase-aligned transactions
that are common for distributed embedded systems. These can be implemented with
several kinds of actor, as follows:

 Periodic time-driven actor with deadline less than or equal to period
 Event-driven actor triggered by either an external event or a message arrival

event (e.g. a sync message, application message) – with or without deadline
 Event-driven actor triggered by a message arrival event – with deadline

inherited from the transaction deadline (terminal transaction actor)

Fig. 4. Control actor modelled as a composition of signal-processing components controlled by
an interface automaton

The interface automaton of a periodic time-driven actor with deadline less than
period is shown in Fig 5-a. When started, the interface automaton generates the
control signals needed to get input signals and start the SPU, starts a timer that will be
used to measure both deadline and period, and makes a transition to state a1 which
will be maintained while current time is less than deadline. When t = D, a control
signal is generated in order to produce output signals, provided that the SPU has
finished computation (ready = 1), and a transition to state a2 is made, which will be
maintained while current time is less than period. When t = T, the interface automaton
generates the signals needed to get input and start the SPU, restarts the timer and goes
back to state a1 (waiting until t = D). This mode of operation will be repeated over and
over again up until a stop signal is issued by an external actor that will force a
transition back to the initial state a0. A transition to that state is also enforced in the
case of deadline violation, when the interface automaton is in state a1 and t = D but
the SPU has not finished computation (ready = 0).

Actor interface automaton

Signal processing

unit

In
p

u
t
la

tc
h

O
u

tp
u

t

la
tc

h

Start event

start ready

Input signals Output signals

get input produce output

Timer tick

Deadline violation

a) with deadline less than period b) with deadline equal to period

Fig. 5. Interface automata of time-driven actors

Fig. 5-b shows the interface automaton of a periodic time-driven actor with
deadline equal to period. Such actors are typically used in control applications
featuring one-period delay from sampling to actuation as well as multi-rate control
systems. The logic of the interface automaton is similar to the one discussed above,
the only difference being the existence of a single wait state, which is maintained
while t < T. When t = T, the interface automaton generates the control signals needed
to produce output, get input, start SPU and restart timer, and goes back to a1 waiting
till the end of the period, and so on, until stopped.

a) with deadline greater than zero b) with deadline equal to zero (no deadline)

Fig. 6. Interface automata of event-driven actors

Fig. 6 shows interface automata for event-driven actors with and without deadline.
The automaton of Fig. 6-a is enabled by the arrival of an external start event (e.g.
external event, sync message or another message arrival event), whereupon it
generates the control signals needed to get input, start SPU and start a timer measuring

a0

a1

a2

t = D & ready /

produce output

start / get input, start SPU,

start timer

 t = D & !ready /

deadline violation

t < D

t < T

 t = T & !stop /

 get input, start SPU,

start timer

 t = T & stop

a0

a1

start /

 get input, start SPU,

start timer

 t = D & !ready /

deadline violation t = D & ready /

produce output

t < D

a0

a1

 start /

get input, start SPU
 ready /

produce output

ready = 0

a0

a1

start /

 get input, start SPU,

start timer

t = T & !stop & !ready /

deadline violation

t = T & !stop & ready /

produce output, get input

start SPU, start timer

t < T

t = T & stop

deadline. When t = D the automaton checks the ready feedback signal and generates
the control signal needed to produce output (ready = 1) or a deadline violation
exception (ready = 0).

An event-driven actor may not have a deadline, e.g. a non-terminal actor of a
phase-aligned transaction that generates output signals immediately after its
computation is finished (see Fig. 6-b). It can be shown that such an actor has a
synchronous execution semantics (D = 0), whereas the terminal actor has a clocked
synchronous semantics (D = Dtrans), i.e. it inherits the end-to-end deadline of the
transaction, such that its output signals are generated at the transaction deadline
instant [9]. Fig. 7 shows an interface automaton describing the behaviour of a terminal
transaction actor. The latter is triggered by a message arrival event but its deadline
timer is started by the global start event when the transaction is released (see e.g.
Fig. 3).

Fig. 7. Interface automaton for a terminal transaction actor

The presented modeling technique has implications for system design, since
interface automata can be used as design models for operational components
conducting the execution of system actors. It has also implications for system
verification, since interface automata are essentially timed automata that can be used
as analysis models for verification tools like e.g., Uppaal or simulation environments
such as Simulink. In particular, interface automata can be used to develop analysis
models that preserve the timed multitasking semantics of the design models. In that
case, the actor is modelled by a pair consisting of an interface automaton and a
functional automaton (or Simulink subsystem) modelling the behaviour of the SPU.
Fig. 8 depicts such a construct using Uppaal notations.

The interface automaton is synchronized with another automaton (e.g. a sync
message generator or a preceding actor) via the start broadcast channel, whereas the
interface and functional automata synchronize with each other by means of the start
SPU channel and the ready feedback signal. The functional automaton has two states -
initial (a0) and executing (a1), whereby the transition from a0 to a1 is labelled with one
or more functions from input to output signals, specifying the signal transformations
performed by the SPU. State a1 is a timed state with an invariant t < R, where t is the
clock measuring task execution time and R is the task response time, which can be
determined through response-time analysis. It is exited when t = R, whereby the
feedback signal finished is set to true.

a0

a1

a2

 t = D & !ready /

deadline violation

start / start timer

triggering event /

get input, start SPU

t = D & ready /

produce output

t < D

Fig. 8. Uppaal model of event-driven actor with deadline

The timed automata shown in Fig. 8 represent an event-driven actor with deadline,
which can be triggered by external events such as global timing events, message
arrival events, etc., modelled by the synchronization channel start. In a phase-aligned
transaction, the corresponding signal will be generated by a predecessor actor via its
output synchronization channel, which will be activated when the predecessor output
is produced. In that case data can be exchanged via a shared data structure.

Similar models can be also developed for the other types of interface automata
discussed in this section. Ultimately, the presented technique can be used to transform
a system design model into a consistent analysis model accepted by verification tools,
such as Uppaal. In particular, each actor is modelled as a pair of interface and
functional automata, and actor interaction – as broadcast communication through
shared data structures used by the corresponding interface automata, as well as
broadcast synchronization channels modelling message arrival events.

4 Implementation Aspects of Interface Automata

The conceptual actor model of Fig. 4 can be used as a design model, whereby the
interface automaton is implemented as an application component (state machine)
interacting with the input latch, signal-processing unit and output latch. The interface
automaton can also be viewed as an operating system component, which processes
relevant events in accordance with the corresponding behavioural pattern, and
conducts the execution of the actor by invoking the necessary kernel primitives. This
interaction is explained below in more detail, in the context of the HARTEXμ kernel
[10].

Interface automata can be implemented as service routines that are invoked by the
kernel Event Manager while processing the corresponding timing and external events,
whereas the signal-processing units are mapped onto actor tasks (task bodies).
Likewise, I/O latches are implemented as task interface routines – task I/O, which are
executed in separation from the main functions of the corresponding tasks.

In that case the interaction between the interface automaton and the actor task is
accomplished by means of the corresponding kernel primitives (see Fig. 9). The
primitive release(task) is used to implement the control actions get input and

start SPU of the conceptual model. Specifically, it is used to register a task - its input
and main body for execution in the corresponding kernel data structures, i.e. Boolean
vectors that are used to emulate system queues [10]. Likewise, the primitive
finish(task) is used to implement the action produce output by registering the task
output in the corresponding kernel vector.

Fig. 9. Interaction between actor interface automaton and actor task

The Event Manager may be invoked by interrupt service routines processing
external or tick interrupts. When activated, it processes all interface automata that are
enabled for execution, which may result in one more newly released tasks having
higher priority than the currently running task. Therefore, the execution of the Event
Manager ends up with the invocation of the Task Manager primitive preempt(), which
executes atomically all registered task outputs and then task inputs in order to observe
the precedence relation between producer and consumer actors exchanging signals at
the particular time instant; it proceeds further by selecting the highest-priority task to
execute from among all registered tasks and the currently running task, which may be
preempted or continued depending on task priorities. A high-priority task will be
started immediately, whereas a lower priority task will wait for its turn to execute and
will be eventually started when the previously running and/or registered higher
priority tasks come to an end. The execution of a running task is finished by returning
to the Task Manager, which resets its registration bit, thereby generating the feedback
signal ready.

Fig. 10. DTM kernel architecture

Hardware Adaptation Layer

E
x
te

rn
a

l a
n

d
 T

im
in

g
 E

v
e

n
ts

Task Manager

Task1IC
o

m
m

u
n

ic
a

ti
o

n
 B

u
s

O

IA1 IANIA2 ... Event Manager ...

......... TaskNI O

Actor interface automaton (Event Manager)Start event

Input signals Output signals

release

Timer tick

Task Manager

Task

Output

finishready

taskStart taskExittaskInputExecute taskOutputExecute

preempt

Task Body
Task

Input

The presented mechanisms constitute a new solution, which allows for very fast
and uniform treatment of events and tasks in the context of a real-time kernel
consisting of three main subsystems: Event Manager incorporating actor interface
automata, Task Manager scheduling the execution of actor tasks, and a
Communication Bus used to transparently exchange signals between communicating
actor tasks via broadcast event notification and communication primitives (see
Fig. 10). More details about the implementation of these and other kernel primitives
can be found in [10].

5 Related Research

Distributed Timed Multitasking has been inspired by the original Timed Multitasking
model [4] and is similar to the logical execution time (LET) model adopted in the
xGiotto language [6]. However, both of these models employ port-based
communication between actors, whereas DTM employs broadcast communication
using labeled state messages (signals). This is a flexible solution, which rules out
artifacts such as ports, mailboxes, operational interfaces with call-return semantics,
etc., thus providing for reconfigurable and truly open distributed embedded systems.

The adopted communication mechanism supports transparent communication and is
characterized by complete separation of computation and communication, since signal
drivers are executed in separation from actor tasks and from each other. That is not the
case with port-based objects, where ports are usually defined as communication objects
whose methods are invoked within task I/O drivers in a conventional call-return
fashion, much in the same way as operational interfaces, see e.g. [4]. Consequently, the
communication pattern is „hardwired‟ in the code of I/O drivers and cannot be
reconfigured without reprogramming. Furthermore, in that implementation ports are
conceived as shared data structures, which are not suitable for distributed applications.

DTM has certain similarities with the models of computation used in synchronous
languages [1]. At the same time, there are some notable differences, and in particular:

 True actor-level concurrency vs. conceptual concurrency, which is „compiled
away‟ during the translation of synchronous programs

 Constant non-zero reaction time vs. instantaneous (zero-time) reaction
assumed by perfectly synchronous systems.

The last feature facilitates the engineering of distributed systems and eliminates
major problems related to fixpoints, instantaneous loops, etc. Furthermore, the
synchronous model does not address the problem of I/O jitter because of the very
nature of the synchrony hypothesis, whereas it is practically eliminated with DTM due
to the constant delay from sampling to actuation inherent to that model.

6 Conclusion

The paper presents an operational specification of Distributed Timed Multitasking in
terms of actor interface automata. This modeling technique has implications for

system design, since interface automata can be used as design models implemented as
application or operating system components. It has also implications for system
verification, since interface automata are essentially timed automata that can be easily
transformed into analysis models used in model-checking tools like Uppaal or
simulation environments such as Simulink.

Interface automata can be used to efficiently implement the event management
subsystem of a DTM kernel, which allows for fast and uniform treatment of events
and tasks in an operational environment consisting of three main subsystems: Event
Manager incorporating actor interface automata, Task Manager scheduling the
execution of actor tasks, and a Communication Bus used to transparently exchange
labeled messages (signals) between communicating actor tasks.

This architecture has been used to implement the latest version of the HARTEXμ
kernel. Research is now going on, aimed at a hardware implementation of the Event
Manager and eventually – the entire kernel, with application tasks running in the soft
cores of a multi-core FPGA chip.

7 References

1. A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le Guernic and R. de Simone, “The
Synchronous Languages 12 Years Later”, Proc. of the IEEE, vol. 91, No 1, Jan. 2003, pp.
64-83

2. P. Marti, R. Villa, J.M. Fuertes, and G. Fohler, “On Real-Time Control Task
Schedulability”, Proceedings of the European Control Conference, Porto, Portugal, Sept.
2001, pp. 2227-2232

3. A. Jantsch, Modeling Embedded Systems and SoCs - Concurrency and Time in Models of
Computation, Morgan Kaufmann, 2003

4. J. Liu and E.A. Lee, “Timed Multitasking for Real-Time Embedded Software”, IEEE
Control Systems Magazine: Advances in Software Enabled Control, Feb. 2003, pp. 65-75

5. T.A. Henzinger, B Horowitz, and C.M Kirsch, “GIOTTO: a Time-Triggered Language for
Embedded Programming”, Proc of the IEEE, v. 91 (2003), pp. 84-99

6. A. Ghosal, T.A. Henzinger, C.M. Kirsch and M.A. Sanvido, “Event-Driven Programming
with Logical Execution Times”, Proc. of HSCC 2004, LNCS 2993 (2004), pp. 357-371

7. L. de Alfaro and T.A. Henzinger, “Interface Automata”, Proc of the 8th European Software
Engineering Conference ESEC 2001, Austria, 2001

8. C. Angelov, X. Ke and K. Sierszecki, “A Component-Based Framework for Distributed
Control Systems”, Proc. of the 32nd EUROMICRO Conference on Software Engineering
and Advanced Applications SEAA 2006, Cavtat, Dubrovnik, Croatia, Aug.-Sept. 2006, pp.
20-27

9. C. Angelov, K. Sierszecki and Y. Guo, “Formal Design Models for Distributed Embedded
Control Systems”, Proc. of the 2nd International Workshop on Model Based Architecting
and Construction of Embedded Systems ACES-MB 2009, Denver, Colorado, USA, Oct.
2009, pp. 43-57

10. K. Sierszecki, C. Angelov and X. Ke, “A Run-Time Environment Supporting Real-Time
Execution of Embedded Control Applications”, Proc. of the 14th International IEEE
Conference on Embedded and Real-Time Computing Systems and Applications RTCSA
2008, Kaohsiung, Taiwan, Aug. 2008

