Penmanship Learning Support System: Feature Extraction for Online Handwritten Characters

Abstract : This paper proposes a feature extraction method for online handwritten characters for a penmanship learning support system. This system has a database of model characters. It evaluates the characters a learner writes by comparing them with the model characters. However, if we prepare feature information for every character, information must be input every time a model character is added. Therefore, we propose a method of automatically extracting features from handwritten characters. In this paper, we examine whether it correctly identifies the turns in strokes as features. The resulting extraction rate is 80% and in the remaining 20% of cases, it extracted an area near a turn.
Type de document :
Communication dans un congrès
Hyun Seung Yang; Rainer Malaka; Junichi Hoshino; Jung Hyun Han. 9th International Conference on Entertainment Computing (ICEC), Sep 2010, Seoul, South Korea. Springer, Lecture Notes in Computer Science, LNCS-6243, pp.496-498, 2010, Entertainment Computing - ICEC 2010. 〈10.1007/978-3-642-15399-0_71〉
Liste complète des métadonnées

https://hal.inria.fr/hal-01055589
Contributeur : Hal Ifip <>
Soumis le : mercredi 13 août 2014 - 15:07:09
Dernière modification le : mercredi 16 août 2017 - 17:33:15
Document(s) archivé(s) le : mercredi 26 novembre 2014 - 23:51:58

Fichier

Feature_Extraction_for_Online_...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Tatsuya Yamaguchi, Noriaki Muranaka, Masataka Tokumaru. Penmanship Learning Support System: Feature Extraction for Online Handwritten Characters. Hyun Seung Yang; Rainer Malaka; Junichi Hoshino; Jung Hyun Han. 9th International Conference on Entertainment Computing (ICEC), Sep 2010, Seoul, South Korea. Springer, Lecture Notes in Computer Science, LNCS-6243, pp.496-498, 2010, Entertainment Computing - ICEC 2010. 〈10.1007/978-3-642-15399-0_71〉. 〈hal-01055589〉

Partager

Métriques

Consultations de la notice

197

Téléchargements de fichiers

69