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Typical assembly and manufacturing operations implemented in desktop and 
microfactories need or at least benefit greatly from the use of machine vision. 
Cameras can, for example, locate parts to be assembled, make dimensional 
measurements, or perform other quality assurance tasks. However, integrating 
standard machine vision cameras with standard C-mount or even S-mount optics to 
the small working envelope of a microfactory is extremely difficult because of their 
relatively large size. Therefore smaller cameras with smaller optics are needed. In this 
paper we present our work on finding an alternative for normal machine vision 
equipment. 

2   Tested Cameras and Camera Modules 

We tested three miniaturized camera modules used, for example, in mobile phones 
and compared them against two normal machine vision cameras with C-mount optics. 
Table 1 and Fig. 1 show tested cameras. In the tests, we used a C-mount lens with 
nominal focal length of 12 mm (type JHF12MK) from SpaceCom [2]. The length of 
the C-mount lens (about 36 mm for the lens used) is not included in the physical size 
mentioned in Table 1 but it has to added to depth length of C-mount cameras. For 
camera modules, the physical depth dimension includes the integrated lens. 

 
Table 1. Tested C-mount cameras and camera modules. 

 
Camera Type Resolu-

tion 
Pixel 
Size 

Full Well 
Capacity 

Physical 
Size (mm) 

Manufac-
turer 

UI-1540-
M (C-
mount) 

Grayscale 
(CMOS, 

USB) 

1280 x 
1024 

(SXGA, 
1.3 MP) 

5.2 
µm 40 000 e- 

32 x 34 x 
38 (W x H 

x D) 

Imaging 
Development
Systems [3] 

UI-6240-
SE-M (C-
mount) 

Grayscale 
(CCD, 
GigE) 

1280 x 
1024 

4.65 
µm 12 000 e- 

44 x 34 x 
60 (W x H 

x D) 

Imaging 
Development
Systems [3] 

Omni-
Vision 

OV-07640  

RGB 
color, 
CMOS 

640 x 480 
(VGA, 
0.3 MP) 

4.2 
µm 35 000 e- 

6 x 6 x 5 
(W x H x 

D) 

OmniVision 
Technologies 

[4] 
Omni-
Vision 

OV-2640  

RGB 
color, 
CMOS 

1600 x 
1200  

(2 MP) 

2.2 
µm 12 000 e- 

8.5 x 8.5 x 
5.5 (W x 
H x D) 

OmniVision 
Technologies 

[4] 
Omni-
Vision 

OV-5620  

RGB 
color, 
CMOS 

2592 x 
1944  

(5 MP) 

2.2 
µm 

Not 
known  

21 x 19 x 
16 (W x H 

x D) 

OmniVision 
Technologies 

[4] 
 

Tested miniaturized camera modules use integrated lenses and custom made, highly 
integrated, electronics making their physical size very small. In addition, due to large 
manufacturing volumes they are cheap making them an interesting alternative for 
normal machine vision equipment. As such, tested miniaturized camera modules do 
not have connectors or software capability to be connected directly to PC as normal 



machine vision cameras. For testing and evaluation, manufacturer offers an evaluation 
kit with USB and/or Ethernet connectors and software enabling connection to PC.  

3   Test Targets and Image Capturing 

We tested each camera to find out 1) how much geometrical distortions images have, 
2) how uniform image brightness is, 3) how sharp edges images have, and 4) how 
well cameras can detect dark and bright objects at the same time (dynamic capability). 
For this purpose, we used targets shown in Fig. 2. Test targets were: a) a checker 
board pattern for calibrating and calculating image geometrical distortions, b) uniform 
mid gray (pixel value 128, max 255) for checking brightness uniformity, c) two 
patterns with black and white bars and slanted squares for evaluating edge sharpness, 
and d) a pattern with 17 regularly distributed grayscales ranging from completely 
black (pixel value 0) to completely white (pixel value 255) for evaluating the dynamic 
capability of the imaging system. Final test target having some common objects is 
only used for visual estimations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Test targets imaged with OmniVision VGA camera module. Red rectangles on top of 

slanted square target indicate areas where edge sharpness was evaluated. 
 

The targets were printed on normal A3 and A4 size papers with high quality color 
laser printer using 1200 dpi printing resolution. We took three images of each target 
in a room with no windows and normal office illumination created with fluorescent 
tubes in the ceiling. When taking images, we adjusted the distance between camera 
and target so that the field-of-view (FOV) was always slightly over 300 mm wide 
fitting A4 size paper. We also took care that the targets were always in the same 
orientation. With C-mount cameras we used the same lens with same aperture size. 
Before and after taking images, we measured illumination intensity in FOV corners 
and center with an exposure meter commonly used in photography. To avoid effects 
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their use in machine vision applications, this is a definite weakness for them. Other 
weaknesses are their short lifespan and limited availability and support at least for 
small customers. 

On the other hand, considering desktop and microfactory applications, the 
extremely small size of miniaturized camera modules is a distinctive advantage. Small 
size enables easy integration and placing cameras to places where normal machine 
vision cameras are impossible to fit. Further advantage of camera modules is their low 
price: the modules tested here cost approximately 20 € per piece. Therefore it would 
be economically feasible to use multiple cameras in each microfactory module 
enabling completely new ways of monitoring and measuring production. 

5.1 Future Work 

As mentioned earlier, tested camera modules do not have necessary connectors or 
software to be connected directly to PC. Therefore we have started to design a circuit 
board to which we can connect four OmniVision 2 MP modules and transfer image 
data to PC over Ethernet connection. Our plan is to fit one or more four camera units 
in our microfactory module. This gives us, for example, a view of the working area 
from several directions enabling measurements in three dimensions using stereo 
vision and/or photogrammetry. Second application could be to use different exposure 
settings in cameras looking at the same area enabling imaging with better dynamics, 
i.e. detecting very bright and dark objects at the same time. Third possibility is to 
combine several partially overlapping images into one high resolution image. 
Researchers at Stanford have implemented these using up to 128 conventionally sized 
cameras [10]. Our aim is to achieve similar results in microfactory environment using 
miniaturized camera modules. 
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