
HAL Id: hal-01056077
https://inria.hal.science/hal-01056077

Submitted on 14 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Very Compact Hardware Implementation of the
KASUMI Block Cipher

Dai Yamamoto, Kouichi Itoh, Jun Yajima

To cite this version:
Dai Yamamoto, Kouichi Itoh, Jun Yajima. A Very Compact Hardware Implementation of the KA-
SUMI Block Cipher. 4th IFIP WG 11.2 International Workshop on Information Security Theory and
Practices: Security and Privacy of Pervasive Systems and Smart Devices (WISTP), Apr 2010, Passau,
Germany. pp.293-307, �10.1007/978-3-642-12368-9_23�. �hal-01056077�

https://inria.hal.science/hal-01056077
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A Very Compact Hardware Implementation

of the KASUMI Block Cipher

Dai Yamamoto, Kouichi Itoh, and Jun Yajima

FUJITSU LABORATORIES LTD.
4-1-1, Kamikodanaka, Nakahara-ku, Kawasaki, 211-8588, Japan

{ydai,kito,jyajima}@labs.fujitsu.com

Abstract. For mobile devices, this paper proposes a compact hardware
(H/W) implementation for the KASUMI block cipher, which is the 3GPP
standard encryption algorithm. In [4], Yamamoto et al. proposed the
method of reducing temporary registers for the MISTY1 FO function
(YYI-08), and implemented a very compact MISTY1 H/W. This paper
aims to design the smallest KASUMI H/W by the application of YYI-08
to KASUMI, which has a similarly structured MISTY1 FO function. We
discussed the applicability and found the problems on register competi-
tion and logical equivalence in the simple application, so we propose the
new YYI-08 improved for KASUMI and the compact H/W architecture.
According to our logic synthesis on a 0.11-µm ASIC process, the gate
size is 2.99 Kgates, which is the smallest as far as we know.

Key words: Block cipher, KASUMI, Hardware, ASIC, FPGA, Com-
pact Implementation

1 Introduction

Recently, mobile devices have included not only the basic functions such as tele-
phone calls and cryptographic function for preventing a wiretapping, but also the
additional functions such as digital camera and digital television. Future mobile
devices have more additional functions as smart devices, so the CPU load will be
increasing. Also, there is required high-throughput for the cryptographic func-
tion because of future broadband network. Hence the cryptographic function is
more suitable to be implemented in dedicated hardware (H/W) than in software
on CPU. The mobile devices have only a limited H/W resource, so circuit size of
the H/W must be as small and low-power as possible. This paper focuses on the
KASUMI 64-bit block cipher [1]. It is estimated that 80% of the global mobile
market is based on second generation mobile communications systems (GSM)
[2], and more and more GSM mobile phones use the KASUMI (A5/3). Also,
the KASUMI will be widely used in third generation mobile communications
systems as the 3rd Generation Partnership Project (3GPP) standard encryp-
tion algorithm. It is well known that the KASUMI is suitable for compact H/W
implementations. We assume an implementation of a very compact KASUMI
circuit is suitable for the future mobile devices with many additional functions.

2 Dai Yamamoto, Kouichi Itoh, and Jun Yajima

Hence we aim to implement KASUMI H/W with the throughput of over 100
Mbps, which is enough speed for mobile devices. Also, we aim to implement it
with a few Kgates. The H/W is one of the smallest H/W implementation for
block ciphers.

A number of KASUMI ASIC and FPGA implementations have been studied
[8]-[16]. In [8], [10]-[16], the implemented H/W is based on two types of H/W
architectures; the pipeline architecture and the loop architecture. These papers
aim to improve the processing speed and the H/W efficiency rather than to
reduce the gate count. In [9], the implemented H/W is based on the loop ar-
chitecture for designing the compact circuit. According to the logic synthesis on
a 0.13-µm ASIC process, the gate size is 3.4 Kgates, which is the smallest at
present. However, the paper did not optimize the size of temporary registers for
storing intermediate data in the processing of KASUMI. In general, the 1-bit
register has larger gate count than other 1-bit logic gates, such as AND, OR,
XOR, and NAND. So, it is very significant for the compact KASUMI H/W to
maximally reduce the total bit length of the registers.

In this paper, we focus on four strategies for the compact design. First, we
choose to implement the H/W by using the half of the FI function. Secondly,
extended keys are generated on-the-fly by using shift registers. Thirdly, we use
S-boxes implemented in the combinational logic. Fourthly, we optimize the total
bit length of the registers, as the main topic of this paper.

In [4], Yamamoto et al. proposed the method of reducing temporary regis-
ters for the MISTY1 FO function from 32 bits to 16 bits (YYI-08), and imple-
mented a very compact H/W of MISTY1 [5]. KASUMI has a similarly structured
MISTY1 FO function. In this paper, we discuss applying YYI-08 to KASUMI
in order to reduce the bit length of the registers, and aim to design the small-
est KASUMIH/W. In this process, we found some problems on the application,
because of the following two differences between KASUMI and MISTY1. First,
MISTY1 has the FL function outside of the F-function in Feistel network, while
KASUMI has the FL function inside of the F-function. This difference causes
the problem of the logic equivalence. Second, it takes 1 cycle for the common
compact MISTY1 H/W to execute the FI function, while it takes 2 cycles for the
common compact KASUMI H/W. This causes the problem that the additional
temporary register is required to execute the FI function. We propose the new
YYI-08 improved for KASUMI to solve these two problems. Also, we propose
the implemented algorithm and the compact H/W architecture based on the
YYI-08 improved for KASUMI.

We synthesize our KASUMI H/W by a 0.11-µm CMOS standard cell library,
then an extremely small size of 2.99 Kgates with 110.3 Mbps throughput is ob-
tained. Also, we synthesize KASUMI H/W by using XCV300E-8BG432 FPGA
device from Xilinx, then a very small size of 332 slices with 44.54 Mbps through-
put is obtained. Through the synthesis on both ASIC and FPGA platforms, our
KASUMI H/W is the smallest, as far as we know.

The rest of the paper is organized as follows. Section 2 explains the algorithm
of KASUMI. Section 3 explains the outline of YYI-08 for MISTY1. Our strategy

A Very Compact Hardware Implementation of the KASUMI Block Cipher 3

for the smallest KASUMI H/W is discussed in Section 4. We analyze the prob-
lems with applying YYI-08 to KASUMI in Section 5. Section 6 proposes the new
YYI-08 improved for KASUMI. Section 7 proposes the compact KASUMIH/W
architecture base on our proposal. Section 8 evaluates the performance of our
KASUMI H/W on both ASIC and FPGA platforms. Finally, we conclude with
a summary and comment on future directions in Section 9.

2 KASUMI

Figure 1 shows the entire structure of KASUMI excluding the key scheduler
[1]. KASUMI encrypts a 64-bit plaintext using a 128-bit secret key. KASUMI
has the 8-round Feistel network with the F-function including FO functions and
FL functions connected in series. The FOi(1 ≤ i ≤ 8) function uses two 48-
bit extended key, KIi and KOi. The FLi(1 ≤ i ≤ 8) function is used in the
encryption and decryption with a 32-bit extended key KLi. In Fig. 1, 16-bit
KLi1 and KLi2 are the left and right data of 32-bit KLi, respectively. The FOi

function has three FI functions FIij(1 ≤ j ≤ 3). Here, KOij(1 ≤ j ≤ 3) and
KIij(1 ≤ j ≤ 3) are the j-th (from left) 16 bits of KOi and KIi, respectively.
The FI function uses the 7-bit S-box S7 and the 9-bit S-box S9. Here, the zero-
extended operation is performed to 7-bit blocks by adding two ‘0’s. The truncate
operation truncates the two most significant bits of a 9-bit string. KIij1 and
KIij2 are the left 7 bits and the right 9 bits of KIij , respectively. The extended
keys KOi, KIi, and KLi are easily generated by rotating the 128-bit secret key
and XORing with constant values.

3 YYI-08

In this paper, the FO function of MISTY1 is implemented based on the assump-
tion that the FI function is executed in 1 cycle, and the FO function is executed
in 3 cycles by repeatedly using one FI function module for the compact design.
The FO function of MISTY1 differs from that of KASUMI in that the extended
key KOi4 is XORed. This XOR operator is non-influential factor for the imple-
mented algorithm of the FO function, so the following discussion excludes this
XOR operator.

Figure 2 shows two methods of dividing an FO function into three cycles; the
straightforward method and YYI-08. The data path in each cycle is illustrated
by the thick line. In the straightforward method shown in Fig. 2(I), an FO
function is separated horizontally for every cycle, so a 32-bit temporary register
is required for left and right 16-bit data. REGL and REGR are two 32-bit data
registers in which intermediate data is stored in the encryption process. The 32-
bit output data from the FO function is XORed with data registers in Cycle3.
In the YYI-08 shown in Fig. 2(II), an FO function is separated vertically for
every cycle. YYI-08 differs from the straightforward method in that the output
data from the FI function in Cycle2 is directly XORed with data registers, which

4 Dai Yamamoto, Kouichi Itoh, and Jun Yajima

FO1FL1FO2 FL2FO3FL3FO4 FL4FO5FL5FO6 FL6FO7FL7FO8 FL8

KL1KO2, KI2KL3
KL5
KL7

KO4, KI4
KO6, KI6
KO8, KI8

KO1, KI1KL2
KL4
KL6

KO3, KI3
KO5, KI5
KO7, KI7KL8

32 3264P

C

FIi1++

++
++

KOi1 16 16KIi1
KOi2
KOi3

16 16

32

32

FIi2KIi2
FIi3KIi3

S9+
+

9 716

KIij1+ +S7
S9+
+S7

KIij2

7 916

zero extended
truncated

zero extended
truncated

+
16

16
32

+
32

AND
OR

KLi1
KLi2<<<<<<64

Fig. 1. KASUMI encryption algorithm

can reduce the 16-bit temporary register for the data, so only 16-bit temporary
register is required.

From the above analysis, we can see the following two conditions are necessary
for cryptographic implementation algorithms in the application of YYI-08.

1. No logic gate exists between the FO function and data registers, and they
are connected directly (To guarantee the logic equivalence when the output
data from the FI function is partially XORed with data registers in Cycle2
and Cycle3 shown in Fig. 2(II)).

2. The FI function is executed in 1 cycle.

4 Four strategies for the compact design

4.1 The number of the FO/FI function module

The FO/FI function is the main component of KASUMI, so the FO/FI function
is one of the most influential factors for gate counts of KASUMI H/W. Thus, it
is important for the compact design to reduce the number of the implemented

A Very Compact Hardware Implementation of the KASUMI Block Cipher 5

REGL (32-bit)

REGR (32-bit)+

REGL (32-bit)

REGR (32-bit)+

++++

REGL (32-bit)

REGR (32-bit)+
Cycle1 Cycle2 Cycle3

FIi1
FIi2

+
+FIi3

+FIi1+
++FIi2
++FIi3

++FIi1
++++FIi3

FIi2
16-bit reg 16-bit reg16-bit reg 16-bit reg

16-bit reg 16-bit reg16-bit reg 16-bit reg 16-bit reg 16-bit reg16-bit reg 16-bit reg

(I) Straightforward method

REGL (32-bit)

REGR (32-bit)+

REGL (32-bit)

REGR (32-bit)+

++++

REGL (32-bit)

REGR (32-bit)+
Cycle1 Cycle2 Cycle3

FIi1
FIi2

+
+FIi3

+FIi1+
++FIi2
++FIi3

++FIi1
++++FIi3

FIi216-bit reg 16-bit reg 16-bit reg

(II) YYI-08

Fig. 2. The implemented method for the FO function of MISTY1

FO/FI function module. The FI function of KASUMI can be divided into two
“FI’ function” shown in Fig. 3. So, we choose to implement only one FI’ function
module for the compact design. That is, the FO function is executed in six clock
cycles by repeatedly using one FI’ function module. This architecture is suitable
for compact implementation.

4.2 Extended key generation method

We choose to generate the extended key by the on-the-fly method, in which
a required extended key is generated in the encryption/decryption process se-
quentially. The on-the-fly method is suitable for the compact design because
the register to store the extended key is not required. In general, KASUMI can
easily generate the extended key by rotating the 128-bit secret key with shift
registers. So, we choose to implement the key scheduler by using shift registers
composed of eight 16-bit registers proposed in [9]. The key scheduler loads the
128-bit secret key into the shift registers from the 16-bit input port in 8 cycles,
which can reduce selectors.

4.3 S-box Implementation method

The S-box performance of KASUMI, including gate counts, depends on the S-
box implementation method, so it is important for the compact design to discuss
them. The implementation method of two S-boxes (S7 and S9) is considered as
follows. The two S-boxes of KASUMI have been designed so that they can be
easily implemented in combinational logic as well as by a lookup table [1]. On
KASUMI H/W, S-boxes in combinational logic show better performance both in
terms of the area size and the delay time than that by a lookup table. There-
fore, we used S-boxes implemented in combinational logic based on the hand-
optimized bit-level logic in [3].

6 Dai Yamamoto, Kouichi Itoh, and Jun Yajima

4.4 Optimization of temporary registers

We aim to design the smallest KASUMI H/W, so maximally reduce the bit length
of the temporary registers for the FO function because the register has larger
gate count than other logic gates. The common compact H/W of KASUMI re-
quires 32-bit temporary register for the FO function as well as that of MISTY1.
KASUMI has a similarly structured MISTY1 FO function, so we consider it pos-
sible that YYI-08 is applied to KASUMI, and the temporary register is reduced
from 32 bits to 16 bits. In Section 5, we discuss the application of YYI-08 to
KASUMI.

S9+
+
9 716

+ +S7
zero-extended
7 916

FIi1++
16 1632
16 1632

2-1MUX

truncated
FIreg(16bit)

FI’ function

FOreg(16bit)
S9+
+
9 716

+ +S7
zero-extended
7 916

FIi1++
16 1632
16 1632

2-1MUX

truncated
FIFOreg(16bit)Merging these two registersinto one register “FIFOreg”

Fig. 3. Merging temporary registers

5 Problem in the application of YYI-08 to KASUMI

As described in Section 3, two conditions are necessary for cryptographic im-
plementation algorithms in the application of YYI-08. However, the conditions
are satisfied for the implementation algorithm of KASUMI discussed in Section
4. First, KASUMI has the FL function between the FO function and data reg-
isters, which causes a problem in the application. In order to apply YYI-08 to
KASUMI and guarantee the logic equivalence, we must analyze the nature of
FL function and improve the implementation algorithm of KASUMI. Second, it
takes 2 cycles to execute the FI function by using FI’ function for the compact
KASUMI H/W, which causes the problem that the additional temporary regis-
ter is required to execute the FI function. The details of these two problems are
explained as follows.

A Very Compact Hardware Implementation of the KASUMI Block Cipher 7

5.1 Problem1: Property of the FL function

This Section explains the problem caused when KASUMI is implemented by us-
ing only 16-bit temporary register FIFOreg. We can see the cause of the problem
by assuming following three implementation cases. Case(1) assumes to imple-
ment KASUMI with 32-bit temporary register straightforwardly, and Case(2)
assumes to implement the modified version of KASUMI with 16-bit temporary
register, and no problem occurs in these cases. But in Case(3), which assumes
to implement the original version of KASUMI with 16-bit temporary register,
the logical equivalence problem occurs. We can see the cause of the problem by
remarking the gap between Case(2), which omits the FL function, and Case(3),
which provides FL function inside of the F-function as original KASUMI.

Case(1) FIFOreg:32-bit, FL function is inside of the F-function.
Case(2) FIFOreg:16-bit, FL function is not inside of the F-function.
Case(3) FIFOreg:16-bit, FL function is inside of the F-function (Problem).

Figure 4 shows the logic in the even-numbered rounds where the FL function
follows the FO function. The input data is loaded from 32-bit data register
REGR = {RH ||RL} (RH , RL: 16-bit). The output data obtained through the
FO and FL functions are XORed with 32-bit data register REGL = {LH ||LL}
(LH , LL: 16-bit) as shown in the following equation.

(LH ||LL) = (LH ||LL) ⊕ FL(FI(RH,2, KOi,2, KIi,2) ⊕ FI(RH,1, KOi,1, KIi,1) ⊕ RL||

FI(RH,3, KOi,3, KIi,3) ⊕ FI(RH,2, KOi,2, KIi,2) ⊕ FI(RH,1, KOi,1, KIi,1) ⊕ RL)

(1)

Here, let {RH,1||RL,1}, {RH,2||RL,2}, {RH,3||RL,3} (RH,1, RL,1, RH,2, RL,2,
RH,3, RL,3: 16-bit) be the data input into the first, second, and third steps of
FO functions, respectively.

Case(1) In Case(1), the size of temporary registers is 32 bits, so the KA-
SUMI H/W can be implemented straightforwardly without logic problems as
follows. The output data from the FO function is stored into the 32-bit FIFOreg
temporarily as shown in the following equation.

FIFOreg = FI(RH,2, KOi,2, KIi,2) ⊕ FI(RH,1, KOi,1, KIi,1) ⊕ RL||

FI(RH,3, KOi,3, KIi,3) ⊕ FI(RH,2, KOi,2, KIi,2) ⊕ FI(RH,1, KOi,1, KIi,1) ⊕ RL

(2)

Next, the 32-bit data stored into the FIFOreg are input into the FL func-
tion, and the output data from the FL function is XORed with data registers
{LH ||LL} as shown in the following equation.

8 Dai Yamamoto, Kouichi Itoh, and Jun YajimaRH RL32+FI+KOi,1KIi,1
+FI+KOi,2KIi,2
+FI+KOi,3KIi,3

LH LL
32

16 16

1616

FI (RH,1, KOi,1, KIi,1)
RH,1 RL,1

FI (RH,2, KOi,2, KIi,2)
RL,2
RL,3

RH,2
RH,3

FI(RH,3, KOi,3, KIi,3)

RH,1=RHRL,1=RL
RH,2=RL,1RL,2=FI(RH,1,KOi,1,KIi,1)⊕RL,1
RH,3=RL,2RL,3=FI(RH,2,KOi,2,KIi,2)⊕RL,2

1616+ +1616 1616
LH=LH⊕FLH{ RL,3 || FI(RH,3,KOi,3,KIi,3) ⊕ RL,3 }LL=LL⊕ FLL{ RL,3 || FI(RH,3,KOi,3,KIi,3) ⊕ RL,3 }FL32

FO function

Fig. 4. The logic in the even-numbered rounds

(LH ||LL) = (LH ||LL) ⊕ FL(FIFOreg) (3)

Case(2) The data shown in the underlined part of Eq. (1) can be divided into
the data shown in the underlined part of the following equation.

(LH ||LL) = (LH ||LL) ⊕ Sig1 ⊕ Sig2 ⊕ Sig3 ⊕ Sig4

Sig1 = (RL||RL)

Sig2 = (FI(RL, KOi,2, KIi,2)||FI(RL, KOi,2, KIi,2))

Sig3 = (FI(RH , KOi,1, KIi,1)||FI(RH , KOi,1, KIi,1))

Sig4 = ((16′h0000})||FI(RH,3, KOi,3, KIi,3)) (4)

In Case(2), the size of temporary registers is 16 bits, so four 32-bit data
from Sig1 to Sig4 cannot be stored as one 32-bit data, {Sig1 ⊕ Sig2 ⊕ Sig3 ⊕

A Very Compact Hardware Implementation of the KASUMI Block Cipher 9

Sig4}. Therefore, four data from Sig1 to Sig4 are partially XORed with data
registers {LH ||LL}. Each of the 32-bit data from Sig1 to Sig4 is generated by bit
concatenating the 16-bit data stored in the 16-bit FIFOreg, so the KASUMIH/W
can be implemented with the 16-bit FIFOreg.

Case(3) In Case(3) where the FL function is inside of the F-function and the
bit length of temporary registers is 16 bits, the logic is shown as the following
equation.

(LH ||LL) = (LH ||LL) ⊕ FL(Sig1 ⊕ Sig2 ⊕ Sig3 ⊕ Sig4) (5)

We cannot calculate the 32-bit data FL(Sig1 ⊕ Sig2 ⊕ Sig3 ⊕ Sig4) by using
the FL function after calculating {Sig1⊕Sig2⊕Sig3⊕Sig4}. This is because the
calculation of {Sig1 ⊕ Sig2 ⊕ Sig3 ⊕ Sig4} requires multiple cycles due to using
one FI’ function, so the 32-bit temporary register is necessary to store the 32-bit
data. Therefore, we consider the following idea to use only 16-bit temporary
register. In each cycle, four data from FL(Sig1) to FL(Sig4) are calculated by
using only 16-bit temporary register, and the four data are partially XORed
with data registers {LH ||LL} as shown in the following equation.

(LH ||LL) = (LH ||LL) ⊕ FL(Sig1) ⊕ FL(Sig2) ⊕ FL(Sig3) ⊕ FL(Sig4) (6)

For the logic equivalence between Eq. (5) and Eq. (6), the following equation
is required to be satisfied.

FL(Sig1 ⊕ Sig2 ⊕ Sig3 ⊕ Sig4) = FL(Sig1) ⊕ FL(Sig2) ⊕ FL(Sig3) ⊕ FL(Sig4) (7)

In general, the equivalence in Eq. (7) is called linearity, which means that
any two integer numbers, X and Y , satisfy FL(X ⊕ Y) = FL(X) ⊕ FL(Y).
However, this equation and Eq. (7) does not hold because of the property of
the FL function. Therefore, the logic equivalence cannot be guaranteed. Next
Section proposes our methods to solve these problems.

5.2 Problem2: Register competition

The FI function is executed in 2 cycles because only one FI’ function module
is implemented. Therefore, the 16-bit temporary register for FI function (i.e.,
is “FIreg”) is necessary to store the intermediate data in Cycle1. Also, 16-bit
temporary register for FO function (i.e., is “FOreg”) is required due to the
application of YYI-08 to KASUMI. If these two registers are implemented inde-
pendently, then the total size of temporary registers is 32 bits as shown in the
left side of Fig. 3. That is, the advantage of YYI-08, the temporary register is

10 Dai Yamamoto, Kouichi Itoh, and Jun Yajima

reduced from 32 bits to 16 bits, is lost. So, we aim to integrate 16-bit FIreg and
16-bit FOreg into one 16-bit register (i.e., is “FIFOreg”) as shown in the right
side of Fig. 3.

However, only 16-bit temporary register causes the following problem. Figure
5 shows the data path in Cycle1, Cycle2, and Cycle3. By the process of the
Cycle1 and Cycle2, the output data of the FIi1 is stored into the 16-bit register.
But in Cycle3, intermediate data of the FIi2 must be stored into the 16-bit
register with holding the previous 16-bit data of the FIi1. Therefore, two 16-
bit temporary registers are required, KASUMI cannot be implemented by using
only 16-bit temporary register FIFOreg when YYI-08 is applied to KASUMI
straightforwardly.

REGL (32-bit)

REGR (32-bit)+

REGL (32-bit)

REGR (32-bit)+

+
+++

REGL (32-bit)

REGR (32-bit)+

16-bitreg

Cycle1 Cycle2 Cycle3

Competition
FIi1
FIi2

+
+FIi3

+16-bitregFIi1+
++FIi2
++FIi3

16-bitreg
++FIi1
++++FIi3

16-bitreg16-bitregFIi2

Fig. 5. YYI-08 straightforwardly applied to KASUMI

6 Proposed methods

6.1 Solution1:Correction for FL function

We solve the problem of the FL function described in Section 5.1. The FL func-
tion does not satisfy FL(X ⊕ Y) = FL(X) ⊕ FL(Y). Consequently, in our own
analysis, we show that the FL function satisfies:

FL(X ⊕ Y) = FL(X) ⊕ FL(Y) ⊕ {(KLi,2 ≪ 1)||16′h0000}. (8)

The following equation is also hold.

A Very Compact Hardware Implementation of the KASUMI Block Cipher 11

FL(X1 ⊕ . . . ⊕ Xn) =

(n is an odd number.)
FL(X1) ⊕ . . . ⊕ FL(Xn)
(n is an even number.)
FL(X1) ⊕ . . . ⊕ FL(Xn) ⊕ {(KLi,2 ≪ 1)||(16′h0000})

(9)

Here, let Xk(k = 1, 2, . . . , n) and FL(Xk) be the input data into FL function
and the output data from FL function. In Eq. (9), when the number of the data
input into FL function n is even, the correction data, {(KLi,2 ≪ 1)||16′h0000},
are XORed with data registers. This correction based on our own analysis can
guarantee the logic equivalence. Therefore, the output data from FO function
can be input into FL function in multiple cycles, so the KASUMI H/W can be
implemented with only 16-bit temporary register FIFOreg.

6.2 Solution2:YYI-08 improved for KASUMI

We solve the problem described in Section 5.2 by reference to Fig. 6. We proposed
new YYI-08 improved for KASUMI, in which the second FI function FIi2 is
executed primarily, and then the first FI function FIi1 is executed. Our new
YYI-08 can avoid the register competition because it is unnecessary to hold the
16-bit output data from the FIi1 during processing the FIi2 if the second FI
function FIi2 is executed primarily. To avoid the register competition by our
new YYI-08 can lead to merging FIreg and FOreg into FIFOreg.

REGL (32-bit)

REGR (32-bit)+

REGL (32-bit)

REGR (32-bit)+

+++

REGL (32-bit)

REGR (32-bit)+

16-bitreg

Cycle1 Cycle2 Cycle3

FIi1
FIi2

+
+FIi3

+
16-bitreg

FIi1+
++FIi2
++FIi3

++FIi1
+++FIi3

16-bitreg
FIi2+

+ REGL (32-bit)

REGR (32-bit)+

REGL (32-bit)

REGR (32-bit)+

+++

REGL (32-bit)

REGR (32-bit)+

16-bitreg

Cycle4 Cycle5 Cycle6

FI1
FI2

+
+FI3

+FI1+
++FI2
++FI3

16-bitreg
++FI1
+++FI3 16-bitreg

FI2 +
+

16-bitreg
16-bitreg

Fig. 6. YYI-08 improved for KASUMI

7 Proposed architecture

This Section proposes new implementation algorithm of KASUMI H/W based
on our proposed method described in Section 6. First, Alg.1 shows the imple-
mented algorithm in odd-numbered rounds where the FO function follows the
FL function. We assume that the FI function is executed in 2 cycles by using

12 Dai Yamamoto, Kouichi Itoh, and Jun Yajima

only one FI’ function module, so let FI′() and FI() be the intermediate data in
Cycle1 and the output data in Cycle2, respectively. Also, “<=” and “=” mean
non-blocking and blocking assignments, respectively. Let FLH() and FLL() be
the upper and the lower 16-bit data of FL(), respectively. In Cycle1, 3, and 5, the
output data from the FL function module is input into FI’ function module at
the same cycle. This means that the FL function module is directly connected to
the FI’ function module. In Cycle2, 4, and 6, the output data from FI’ function
module is XORed with data register {RH ||RL} at the same cycle.

Next, Alg.2 shows the implemented algorithm in even-numbered rounds.
Here, the output data are XORed with data register in Cycle3, 5, and 7, it
takes one more cycle in comparison to odd-numbered rounds. This is because
the temporary register FIFOreg exists on the data path from FI’ to FL. This
can avoid a feedback loop structure, and an increase in area size due to two
implemented FL function module. In Alg.2, the output data are XORed with
data register even number of times (Cycle3, 5, 6, and 7), so the correction data,
{(KLi,2 ≪ 1)||16′h0000}, are XORed with data registers in Cycle4. Note that
the logic equivalence can be guaranteed by the corrective operation in any cycle
including Cycle4.

Alg. 1. Odd-numbered rounds

Cycle1 : FIFOreg <= FI′i,2(FLL({LH ||LL}), KOi,2, KIi,2)
Cycle2 : FIFOsig = FIi,2(FLL({LH ||LL}), KOi,2, KIi,2)
Cycle2 : {RH ||RL} <= {RH ||RL} ⊕ {FIFOsig||FIFOsig}
Cycle3 : FIFOreg <= FI′i,1(FLH({LH ||LL}), KOi,1, KIi,1)
Cycle4 : FIFOsig = FIi,1(FLH({LH ||LL}), KOi,1, KIi,1) ⊕ FLL({LH ||LL})
Cycle4 : FIFOreg <= FIFOsig
Cycle5 : {RH ||RL} <= {RH ||RL} ⊕ {FIFOreg||FIFOreg}
Cycle5 : FIFOreg <= FI′i,3(FIFOreg, KOi,3, KIi,3)
Cycle6 : FIFOsig = FIi,3(FIFOreg, KOi,3, KIi,3)
Cycle6 : {RH ||RL} <= {RH ||RL} ⊕ {16′h0000||FIFOsig}

Alg. 2. Even-numbered rounds

Cycle1 : FIFOreg <= FI′i,2(RL, KOi,2, KIi,2)
Cycle2 : FIFOreg <= FIi,2(RL, KOi,2, KIi,2)
Cycle3 : {LH ||LL} <= {LH ||LL} ⊕ FL({FIFOreg||FIFOreg})
Cycle3 : FIFOreg <= FI′i,1(RH , KOi,1, KIi,1)
Cycle4 : {LH ||LL} <= {LH ||LL} ⊕ {(KLi,2 ≪ 1)||16′h0000}
Cycle4 : FIFOreg <= FIi,1(RH , KOi,1, KIi,1)
Cycle5 : {LH ||LL} <= {LH ||LL} ⊕ FL({FIFOreg||FIFOreg})
Cycle5 : FIFOreg <= FI′i,3(FIFOreg ⊕ RL, KOi,3, KIi,3)
Cycle6 : {LH ||LL} <= {LH ||LL} ⊕ FL({RL||RL})
Cycle6 : FIFOreg <= FIi,3(FIFOreg ⊕ RL, KOi,3, KIi,3)
Cycle7 : {LH ||LL} <= {LH ||LL} ⊕ ({16′h0000||FIFOreg})

A Very Compact Hardware Implementation of the KASUMI Block Cipher 13

LH LL
RHRL 3-1MUX

+
32

32

16 16
16 32

16
32

32
+

3216161616
16 1616’h0000

{ KLi,2 <<< 1|| 16'h0000 }correctiveoperation

3216 1616’h0000

6-1MUXFI’+
32

FIFOreg

FL
5-1MUX

2-1MUX 2-1MUX4-1MUX+

FIFOsig

16
+

KOi3-1MUXKIi 16 16

Din
Din
Dout

Fig. 7. Proposed KASUMI H/W architecture

Figure 7 shows the proposed architecture of the KASUMI H/W based on
Alg. 1 and Alg. 2. Our proposed method can implement the KASUMI H/W with
only 16-bit temporary register FIFOreg. The implemented H/W generates a 64-
bit ciphertext (plaintext) from a 64-bit plaintext (ciphertext) in 54 clock cycles.
The data input and output requires 2 cycles. The odd-numbered rounds requires
6 (cycles) × 4 (rounds) = 24 cycles, and the even-numbered rounds requires 7
(cycles) × 4 (rounds) = 28 cycles.

8 Performance evaluation

This Section evaluates the ASIC and FPGA performance of our KASUMIH/W.
The KASUMI H/W is verified by using the test vectors provided by the NESSIE
submission package [17]. The proposed H/W is not based on scan design, and is
synthesized on a 0.11-µm CMOS standard cell library with the Design Compiler

14 Dai Yamamoto, Kouichi Itoh, and Jun Yajima

2006.06-SP5-1 under the worst case conditions, and with size optimization and
ungroup command. Also, one gate is equivalent to 2-1NAND gate.

Table 1 shows the ASIC performance of our proposed KASUMI H/W. The
proposed H/W realized the smallest-area of less than 3K gates. We estimate the
effect of our proposal on the gate counts. First, we focus on the registers. The
straightforward H/W uses the 32-bit temporary register, while our KASUMI
H/W used only 16-bit one due to our proposal. We suppose 1-bit register =
13.5 NAND gates, so our proposal can reduce about 216 NAND gates. Next, we
focus on the multiplexers (MUXs). We show that our proposal do not increase
MUXs in the following discussion. MUXs which have N -bit length and M input
signals equal (N/16)(M − 1) 16-bit 2-1MUXs. So, we evaluate the gate count
based on the numbers of 16-bit 2-1MUXs. We compare our KASUMI H/W with
the previous smallest H/W in [9]. The H/W in [9] uses 26 16-bit 2-1MUXs. Note
that we add six 16-bit 2-1MUXs to the original H/W in [9]. This is because the
original H/W in [9] omits the MUXs into which the data output from registers
are directly input. These MUXs are necessary to keep the value of registers.
Meanwhile, our H/W in Fig. 7 uses less than 26 16-bit 2-1MUXs. Our H/W uses
two 2-1MUXs where one-sided input data become 0, so they can be transformed
into an AND gates smaller than MUX gates. Hence we estimate less than 26
16-bit 2-1MUXs, while 27 16-bit 2-1MUXs are used in our H/W shown in Fig. 7.
Also, the FIFOreg in Fig. 7 is not connected to the MUX, because our proposal
can always input the value of FIFOsig into the FIFOreg. As the result, our
KASUMI H/W can reduce the gate counts of registers and MUXs compared
with the previous smallest H/W in [9].

Next, “H/W efficiency” means the throughput per gate, so the implemen-
tation with higher throughput and smaller gate counts show higher values. In
this paper, the H/W efficiency is defined as the throughput divided by area size.
The throughput and efficiency of the proposed KASUMI H/W are comparatively
lower because the maximum frequency of ours is smaller than that of the other
reports. We discuss the reason by comparison with the KASUMIH/W in [9].
The critical path of the KASUMI H/W in [9] is shorter than that of ours. This
is because the temporary register exists on the data path between FI’ and FL in
the KASUMI H/W in [9], while the FL function module is directly connected to
the FI’ function module in our KASUMIH/W. The difference is due to only 16-
bit temporary register by the application of YYI-08 to KASUMI. Our proposed
KASUMI H/W can achieve throughput of over 100 Mbps, so has enough per-
formance for embedded systems, such as 3GPP mobile phones. This paper aims
to implement the smallest H/W of KASUMI, so it is significant to maximally
reduce the gate count even though the throughput and the H/W efficiency are
not the highest.

For further comparison with eliminating the CMOS technology difference, we
evaluate the FPGA performance of our KASUMIH/W as shown in Tab.2. A lot
of previous works choose the same FPGA chip (Xilinx vertex-E series, XCV300E-
8BG432) [18] for fair evaluation. We synthesize the proposed H/W by using
XCV300E-8BG432 FPGA device with Xilinx ISE 10.1 with size optimization,

A Very Compact Hardware Implementation of the KASUMI Block Cipher 15

Table 1. H/W performance comparison in ASICs

Source Process Functions Cycle MaxFreq. Thr’put Area Efficiency
[µm] [MHz] [Mbps] [Kgates] [Kbps/gates]

This work 0.11 Enc.+Dec. 54 97.6 110.3 2.99 36.9

[6] 0.18 N/A N/A N/A 130 6.5 20

[7] 0.09 Enc.+Dec. N/A 226 850 9 94.4

[8] 0.25 Enc. 8 90.42 723.37 15.697 46.08

[8] 0.25 Enc. 1 94.05 5786.94 47.660 126.29

[9] 0.13 Enc.+Dec. 56 251.89 287.87 3.437 83.76

Table 2. H/W performance comparison in FPGAs

Source Functions Cycle MaxFreq. Thr’put Area Efficiency Device
[MHz] [Mbps] [Slice] [Kbps/Slice]

This work Enc.+Dec. 54 31.928 36.09 332 108.70 300E-6BG432

This work Enc.+Dec. 54 39.403 44.54 332 134.15 300E-8BG432

[8] Enc. 8 20.88 167.04 1287 129.79 300E-6BG432

[9] Enc.+Dec. 56 58.14 66.45 435 152.75 300E-6BG432

[9] Enc.+Dec. 56 68.13 77.86 435 179.00 300E-8BG432

[10] N/A 8 20.00 110.00 650 169.23 Virtex-E

[11] Enc. 16 41.14 165 488 338.11 300E-8BG432

[12] Enc. 12 41.625 222 566 392.22 300E-8BG432

[13] Enc.+Dec. 8 71 568 1174 483.81 N/A

[14] Enc.+Dec. 8 54.00 432 3452 125.14 300E-8BG432

[15] Enc. 16 79.453 318 625 508.80 300E-8BG432

[16] Enc. 16 96.33 385.32 448 860.08 Virtex-II

then a very small size of 332 slices with 44.54 Mbps throughput is obtained. This
is the smallest KASUMI H/W, as far as we know.

9 Conclusion

We presented the very small KASUMIH/W, which used only 16-bit register due
to the application of YYI-08 to KASUMI. We found that the application re-
quired the solution for the following two problems, and proposed our methods of
solving them. First, the FL function did not unconditionally satisfy the linearity,
which is essential for the application of YYI-08. We showed that the FL function
could satisfy the linearity with correction. Second, the KASUMIH/W takes 2
cycles to execute the FI function, which requires the additional register, so we
proposed new YYI-08 improved for KASUMI, in which the order of execution
is changed. The implemented KASUMI H/W based on our proposal was synthe-
sized by a 0.11-µm CMOS standard cell library, then an extremely small size
of 2.99 Kgates with 110.3 Mbps throughput was obtained. This is the smallest

16 Dai Yamamoto, Kouichi Itoh, and Jun Yajima

KASUMI H/W, as far as we know. Future work will include discussion on the
fastest KASUMI H/W implementation.

References

1. Third Generation Partnership Project: 3GPP TS 35.202 v7.0.0 Document 2: KA-
SUMI Specification. Jun. 2007.

2. GSM Association, Market Data Summary (Q2 2009), http://www.gsmworld.com/
newsroom/market-data/market data summary.htm

3. Matsui, M., Nakajima, J.: On the Power of Bitslice Implementation on Intel Core2
Processor. In: Proc. CHES 2007, LNCS 4727, pp.121–134, 2007.

4. Yamamoto,D., Yajima, J., Itoh,K.: A Very Compact Hardware Implementation of
the MISTY1 Block Cipher. In: Proc. CHES 2008, LNCS 5154, pp.315–330, 2008.

5. Matsui, M.: New Block Encryption Algorithm MISTY. In: Proc. FSE 1997, LNCS
1267, pp.54–68, 1997.

6. Mitsubishi Electric Web Site, http://global.mitsubishielectric.com/bu/

security/rd/rd05/kasumi b.html

7. Elliptic Semiconductor Web Site, http://www.ellipticsemi.com/pdf/CLP-38

80102.pdf

8. Marinis, K., Moshopoulos, NK., Karoubalis, F., Pekmestzi, KZ.: On the Hardware
Implementation of the 3GPP Confidentiality and Integrity Algorithms. In: Proc.
ISC 2001, LNCS 2200, pp.248–265, 2001.

9. Satoh, A., Morioka, S.: Small and High-Speed Hardware Architectures for the
3GPP Standard Cipher KASUMI. In: Proc. ISC 2002, LNCS 2433, pp.48–62, 2002.

10. Kim,H., Choi, Y., Kim,M., Ryu,H.: Hardware implementation of the 3GPP KA-
SUMI crypto algorithm. In: Proc. ITC-CSCC-2002, pp.317–320, 2002.

11. Balderas, T., Cumplido,R.: An Efficient Hardware Implementation of the KASUMI
Block Cipher for Third Generation Cellular Networks. In: Proc. GSPx2004, 2004.

12. Balderas, T., Cumplido,R.: An Efficient Reuse-Based Approach to Implement the
3GPP KASUMI Block Cipher. In: Proc. ICEEE 2004, pp.113–118, 2004.

13. Kim,H., Lee, S.: Design and Implementation of a Private and Public Key Crypto
Processor and Its Application to a Security System. IEEE Transactions on Con-
sumer Electronics, Vol.50, No.1, pp.214–224, 2004.

14. Kitsos, P., Galanis, MD., Koufopavlou,O.: High-speed hardware implementations
of the KASUMI block cipher. In: Proc. ISCAS 2004, Vol.2, pp.549–552, 2004.

15. Balderas, T., Cumplido,R.: “High Performance Encryption Cores for 3G Net-
works,” In: Proc. DAC2005, pp.240–243, 2005.

16. Balderas, T., Cumplido,R., Feregrino-Uribe, C.: On the design and implementation
of a RISC processor extension for the KASUMI encryption algorithm. Computers
and Electrical Engineering, Vol.34, Issue.6, pp.531–546, 2008.

17. NESSIE: New European Schemes for Signatures, Integrity, and Encryption, https:
//www.cosic.esat.kuleuven.be/nessie/

18. Virtex-E 1.8V FPGA Complete Data Sheet, http://japan.xilinx.com/support/
documentation/data sheets/ds022.pdf

