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Abstract. IP fast reroute is a mechanism that is used to reroute packets
around a failed link as soon as the link fails. Most of the IP fast reroute
mechanisms, that have been proposed so far, focus on single or dual link
failures but can not handle Shared Risk Link Group (SRLG) failures
when several links fail at the same time because of some common under-
lying component failure. Furthermore, most of current work is based on
the assumption that each node in the network has access to some global
topology information of the network. In this paper, we present the first
IP fast reroute mechanism for SRLG failures that is not based on the
assumption that the nodes in the network have global topology informa-
tion of the network. In our mechanism, nodes in the network use “relay
bits” to identify themselves as “relay nodes” for a reroute link in a fully
distributed mannner. Through simulation, we show that our mechanism
succeeds in rerouting around SRLG failures alomst 100% of the time,
with average length of a reroute path about 1.5 times the re-converged
shortest path.

keywords. IP Fast Reroute, Shared Risk Link Group Failure, Distance
Vector, Failure Recovery, Reliability

1 Introduction

Demands on reliability and availability of the Internet are becoming more and
more stringent, especially with the development of more real-time applications
like VoIP and Video on demand [5]. Unfortunately, failures are very common in
daily operations of a network and what makes things worse is that most failures
are not predictable. It is reported in [22] that 80% of all failures are unexpected.
Among these unexpected failures, besides the most common single link failures,
another significant part is Shared Risk Link Group (SRLG) failures. Links that



2

belong to the same SRLG share some underlying component either in the optical
infrastructure like a fiber or at a router like a line card.

The convergence process for failure recovery in traditional routing protocols,
link state and distance vector, is time consuming and may result in instability in
case of frequent transient link failures. Although much work has been dedicated
to reduce the convergence time of routing to even under a second [12], it is still
quite far from the 50 milliseconds target for mission critical applications [25].
Recently, IP fast reroute [10, 13, 26] has been proposed to proactively compute
backup paths before a failure happens. And as soon as a failure is detected, the
backup path can be invoked immediately to reroute around the failure during the
convergence period. Thus the routing disruption time can be limited to only the
failure detection time. Although several mechanisms have been developed within
the IP fast reroute realm, most of them focus on single or dual link failures and
can not handle SRLG failures [3, 4, 6, 14, 16, 20, 23, 24]. Also, most of existing
work relies on the existence of some global topology information to precompute
backup paths [3, 4, 6, 8, 14,16–18,23,24,27].

When global topology information is not available (for example, in distance
vector like routing protocols), to recover from SRLG failures, IP fast reroute
faces more challenges: how to get necessary information to compute alternative
backup paths to avoid all the links in the same SRLG, without changing the
original routing tables? To address this challenge, we design an IP fast reroute
mechanism for handling SRLG failures with the following goals:

– No Global Topology Information : Our mechanism does not assume
nodes in the network have access to any global topology information: neither
the connectivity information of the network nor any additional IP addresses
associated with each node. Each node only has access to its local topology,
i.e., links associated with the node itself. Also, each node only knows to
which SRLG its associated links belong but does not know other links in the
same SRLG.

– Distributed Computation of Backup Paths: Each backup path for a
reroute link is designated by a node called relay node. In order to find relay
nodes in a fully distributed way, we introduce two relay bits for each reroute
link. Using the two relay bits, a node in the network can automatically decide
if itself can serve as a relay node for a reroute link or not, in a distributed
manner.

– Reroute Only When You Want : Rerouting information is propagated
only for links that are currently under protection using IP fast reroute, which
are called reroute links. Reroute links can be changed at any time. So the
cost of our mechanism is dynamically associated with the number of links
currently protected in the network.

We propose a tunneling scheme to ensure that loops are never formed. We also
propose an algorithm to suppress redundant relay notification messages. Finally
we show, through extensive simulations on a variety of networks of different
sizes and varying SRLG size, that the coverage of our mechanism is close to
100%. Suppression can effectively cut about 80% notification messages when the
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network has at least one hundred nodes. Also, the average length of a reroute
path is around 1.5 times the average length of the re-converged shortest path.

The structure and organization of this paper follows from our technical re-
port [20] which focuses on how to handle single link failures using IP fast reroute.
Section 2 presents the concept of reroute links. Then in Section 3, we introduce
the concept of a relay node for a reroute link that is a member of a SRLG and
how to use the relay node in rerouting. Section 4 presents how a node learns a
relay node, without access to the global topology information, for a reroute link
which belongs to a SRLG. Section 5 describes the suppression mode to suppress
redundant notification messages. We show the efficiency and overhead of our
rerouting algorithms in Section 6. Related work is reviewed in Section 7. Finally
we conclude in Section 8.

2 Reroute Links in Shared Risk Link Group

We model a network as an undirected graph where each node represents a router
and each (undirected) edge between two nodes represents two links. For each link
a→b, node a is called the source of link a→b and node b is called the sink of link
a→b. We assume that packets are routed between different nodes in the network
using distance vector routing protocols [2, 21].

A Shared Risk Link Group (SLRG) is a set of links that share the same
underlying physical point of failure such as a fiber cut or a line card failure. We
assume that some links in the network are partitioned into SRLGs with unique
identifiers. Thus, each link belongs to at most one SLRG. We also assume that
the source node a of any link a→b in the network knows the identifier of the
SRLG to which link a→b belongs, if any. (But node a does not need to know
the other links in the same SRLG to which link a→b belongs, if any.)

g1 g1

g1

g2

g2

g3 g3

Fig. 1. An example network N1

Table 1. Routing table RT.a of
node a

dest. next hop dist.
a - 0
b b 2
c b 3
d b 5
e e 1
f e 2
g e 2
h e 3
i e 4

As an example, Figure 1 shows a network N1 in which each edge is labeled
with a distance. The routing table RT.a of node a in network N1 is shown in
Table 1. Also, there are three SRLGs in N1 with SRLG number g1, g2 and g3.
Link a→b, c→d and e→f belong to SRLG g1; link b→f and f→g belong to
SRLG g2; link g→h and h→i belong to SRLG g3.

Now consider the situation where node a has a packet whose ultimate desti-
nation is node d. But then node a notices that link a→b used to reach destination
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d has failed. The question now is “what does node a do with this packet that
need to be transmitted over the failed link a→b before the entries of the routing
table RT.a have converged to their new correct values?”

Node a has two options in this situation. The first option is that node a
drops every packet. This option is attractive if link a→b is very reliable or if the
rate of packets that need to be transmitted over link a→b is very small. The
second option is that node a anticipates the failure of link a→b and maintains
alternative routes that can be used to reroute around link a→b when this link
fails. To do so, node a needs to advertise to every node in the network that link
a→b has been designated (by node a) to be a reroute link. Thus every node in
the network can proceed to help node a identify and maintain alternative routes
that can be used to reroute around link a→b when it fails.

Each node a in the network is provided with a rerouting table RR.a that
has four columns: ( rlink, srlg, rbits, relay). The first column, rlink, in every
rerouting table lists all the links that have been designated, by their source
nodes, as reroute links. The second column, srlg, lists the id of the shared risk
link group that this reroute link belongs to. The other two columns, rbits and
relay, are discussed below in Section 4.

Initially, the rerouting table RR.a of each node a is empty except that node
a adds one entry for each link a→sn that a wants to designate as a reroute link.
Whenever node a sends a copy of its routing table RT.a to each neighboring
node, node a also sends a copy of its rerouting table RR.a (excluding the “re-
lay” column) to the neighboring node. This periodic exchange of routing and
rerouting tables between neighboring nodes in the network eventually causes ev-
ery link that has been designated as a reroute link to have one entry in every
rerouting table in the network. At any time, each node a can change the set of
links that it has designated as reroute links by adding new links to this set or
by removing old links from this set.

3 Relay Nodes for SRLG failures

In this section, we introduce the concept of a relay node for a reroute link that
is a member of a SRLG in a network. (Note that the relay node defined in this
section also works for reroute links that does not belong to any SRLG in the
network.) We then discuss how a relay node for a reroute link can be used in
rerouting around its reroute link when all the links that belong to the same
SRLG fail.

Let s and d be two nodes in a network N, and let R(s, d) denote the shortest
route from node s to node d as determined by the routing tables. A node r is
called a relay node for a reroute link a→b in N iff neither the route R(a, r) nor
the route R(r, b) contains any link which belongs to the same SRLG as link
a→b (including a→b itself).

As an example, consider network N1 in Figure 1. Link a→b, c→d and e→f
belong to the same SRLG g1. If link a→b in network N1 is designated, by node
a, as a reroute link, then by definition, node g, h and i are relay nodes for link
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a→b. However, if link b→c and c→h belong to the same SRLG (not shown in
N1), and link b→c is designated, by node b, as a reroute link, then no node in
network N1 is a relay node for link b→c. These two examples simply show that a
reroute link in a SRLG can have one or more relay nodes or even no relay nodes.
Fortunately, we show by extensive simulations below in Section 6 that reroute
links in a SRLG that have no relay nodes are extremely rare.

Next we describe the procedure for rerouting around a reroute link a→b,
when this link fails, assuming that node a knows the identity of a relay node r
for link a→b:

1. Assume that a packet is to be sent from a node s to a node d along the route
R(s, d) which contains the reroute link a→b. In this case, the IP header of
the packet can be represented as (from s, to d).

2. Assume also that when this packet reaches node a, node a discovers that
the reroute link a→b has failed and so decides to reroute the packet towards
the relay node r for link a→b. In this case, node a encapsulates the packet
in two outer IP headers (from a, to b) and then (from a, to r) and forwards
the encapsulated packet towards r.

3. When the encapsulated packet reaches the relay node r, node r removes
the outermost IP header (from a, to r) and discovers that the packet has
an inner IP header (from a, to b). Thus node r forwards the encapsulated
packet towards b.

4. When the encapsulated packet reaches node b, node b removes the outer IP
header (from a, to b) and discovers that the packet has an inner IP header
(from s, to d). Thus node b forwards the packet towards d. Note that now
the packet is not encapsulated any more.

5. Assume that, while the packet is traversing the route R(b, d) (non-encapsulated
now like a normal packet), the packet reaches a node x that needs to trans-
mit the packet over a reroute link x→y except that it discovers that link
x→y has failed. Node x can use the same procedure, step 1 through 4 as
describe above, to reroute the packet around the failed link x→y, no matter
whether link x→y belongs to the same SRLG as link a→b or not.

6. However, assume that while the encapsulated packet is traversing the route
R(a, r) or the route R(r, b), the packet reaches a link x→y that has failed.
Recognizing that the packet is being rerouted because it is an encapsulated
packet, node x drops the packet and does not attempt to reroute it a second
time.

The fact that no routing loops are created due to the repeated rerouting of
the same packet is established in the following lemma and theorem. The proofs
can be found in [19].

Lemma 1. Let r be a relay node for a reroute link a→b in a network N, and let
d be any node in network N such that the route R(a, d) contains the reroute link
a→b. If link a→b fails, and node a reroutes a packet, whose ultimate destination
is node d, to node r, then this packet will not traverse any loop in the network
before reaching node b no matter whether link a→b belongs to a SRLG or not.
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Theorem 1. No routing loops are created due to repeated rerouting of the same
packet to its ultimate destination using the rerouting procedure, no matter whether
all encountered failed links belong to the same SRLG or not.

4 Relay Bits to identify Relay Nodes

In the previous section we presented a procedure by which a node a can reroute
packets around a reroute link a→b when all the links that belong to the same
SRLG fail. This procedure is based on the assumption that node a knows a relay
node for the reroute link a→b. So the question now is “How does node a know a
relay node for link a→b which belongs to a SRLG without access to the global
topology information?” In this section we present a fully distributed procedure
by which node a learns all the relay nodes for link a→b although node a does not
know any other links that belong to the same SRLG as link a→b. This procedure
consists of the following three parts.

The First Part: For node a to announce that it has designated link a→b as a
reroute link, node a adds the entry (a→b, g1, 00, -) to its rerouting table RR.a.
Recall that each entry in a rerouting table consists of four components (rlink,
srlg, rbits, relay), where rlink is a reroute link; srlg lists the id of the SRLG
that this link belongs to; rbits are two relay bits (to be discussed shortly) for the
reroute link; and relay is the set of all known relay nodes for the reroute link.
The initial value of relay is “-” which indicates that node a does not know yet
this value.

Because the rerouting table of every node is sent periodically to every neigh-
bor of this node, the fact that link a→b has been designated a reroute link, as
well as the SRLG g1 it blongs to, is eventually recorded in every rerouting table
in the network according to the following rule. If a node x receives a rerouting
table RR.y from a neighbor y, and the next hop for reaching node a in the rout-
ing table RT.x of node x is node y, and if RR.y has an a→b entry but RR.x does
not have a→b entry, then node x adds an entry (a→b, g1, 00, -) to its rerouting
table RR.x. Conversely, if RR.y has no a→b entry but RR.x has an a→b entry,
then node x removes the a→b entry from its rerouting table RR.x.

The Second Part: For each reroute link a→b, node x maintains two bits,
named the relay bits of link a→b, in its rerouting table RR.x. These two bits
are denoted rbits.x[a→b] and each of the two bits has anyone of two values. The
value “0” in the first bit indicates two cases: either node x does not know yet
the correct value of the bit (i.e., initial value of the bit), or node x has checked
that some link that belongs to the same SRLG g1 as link a→b occurs in the
route R(x, a). The value “1” in the first bit indicates that x has checked that
no link that belongs to the same SRLG g1 as link a→b occurs in the route R(x,
a). Similarly, the value in the second bit indicates the same meaning except that
node x checks whether there is any link that belongs to the same SRLG g1 as
link a→b occurs in the route R(x, b). Only when the two bits are both “1”s, i.e.,
no link that belongs to the same SRLG g1 as link a→b occurs in route R(x, a)
and route R(x, b), node x is a relay node for reroute link a→b.
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Next, we describe how to set up the two relay bits for a reroute link. Initially,
the value of rbits.x[a→b] is “00” in the rerouting table RR.x in every node x in
the network, meaning that every node does not know the correct value of the
bits yet. The source node a of link a→b assigns the relay bits rbits.a[a→b] in
its rerouting table RR.a the value 10. The first bit “1” means that no link that
belongs to the same SRLG g1 as link a→b occurs in the route R(a, a), and the
second bit “0” means that link a→b occurs in the route R(a, b). Then the sink
node b of link a→b assigns the bits rbits.b[a→b] in its rerouting table RR.b the
value 01. The first bit “0” means that link b→a that belongs to the same SRLG
g1 as link a→b occurs in the route R(b, a), and the second bit “1” means that
no link that belongs to the same SRLG g1 as link a→b occurs in the route R(b,
b).

Then every other node x in the network assigns each of the two relay bits
rbits.x[a→b] in its rerouting table RR.x the value val, where val is either 0 or
1, according to the following rule: If x receives RR.y from neighbor y, and if
the next hop for reaching node a in the routing table RT.x of node x is node
y, then node x checks whether the SRLG of link x→y is the same as the SRLG
of link a→b, if yes, then node x assigns the first bit rbits.x[a→b][0] in its RR.x
the value 0. Otherwise, node x assigns the first bit rbits.x[a→b][0] in its RR.x
the value of the first bit in rbits.y[a→b][0]. Similarly, node x assigns the second
relay bit.

The first and second parts outlined above are part of updating the rerouting
table RR.x after node x receives the rerouting table RR.y from the neighboring
node y shown in Algorithm 1.

Algorithm 1: Update rerouting table RR.x after x
receives rerouting table RR.y from neighbor y

1: for (sr→sn ∈ rlink.x) and (sr→sn /∈ rlink.y) do

2: if nexthop.x[sr] == y then

3: remove sr→sn entry from RR.x;
4: for (sr→sn /∈ rlink.x) and (sr→sn ∈ rlink.y) do

5: if nexthop.x[sr] == y then

6: add sr→sn entry to RR.x;
7: for sr→sn ∈ rlink.x do

8: if x == sr then

9: rbits.x[sr→sn] := 10;
10: else if x == sn then

11: rbits.x[sr→sn] := 01;
12: else

13: if nexthop.x[sr] == y then

14: if srlg.x[x→y] == srlg.x[sr→sn] then

15: rbits.x[sr→sn][0] := 0;
16: else

17: rbits.x[sr→sn][0] := rbits.y[sr→sn][0];
18: if nexthop.x[sn] == y then

19: if srlg.x[x→y] == srlg.x[sr→sn] then

20: rbits.x[sr→sn][1] := 0;
21: else

22: rbits.x[sr→sn][1] := rbits.y[sr→sn][1];

Table 2. Rerouting table
RR.a of node a in network
N1 with the relay nodes for
the reroute links a→b whose
source node is a

rlink srlg rbits relay
a→b g1 10 g, h, i
a→e - 10 b, c, d
c→d g1 00 -
e→f g1 10 -
b→f g2 11 -
f→g g2 11 -
g→h g3 10 -
h→i g3 10 -
d→i - 11 -

The Third Part: When node a receives a notify(x, a→b) message, Node a
then adds x to the set of relay.a[a→b] in the rerouting table RR.a of node a.
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In Figure 1, assume that all the links in three SRLGs g1, g2 and g3 have been
designated by their respective source nodes to be reroute links. Also, assume that
link a→e and link d→i have been designated as reroute links too. But these two
links do not belong to any SRLG. Then the rerouting table RR.a of node a,
after these links have been designated as reroute links, is shown in Table 2.

Correctness of the procedure for updating the relay bits follows from the next
theorem. The proof can be found in [19].

Theorem 2. For any node x in a network N , if the relay bits in node x for a
reroute link a→b are both ones, i.e., rbits.x[a→b]=11, then neither route R(a,x)
nor route R(x,b) contains any link that belongs to the same SRLG as reroute
link a→b.

5 Suppression Mode

There is one problem concerning the second and third part of the procedure
discussed in the previous section: for some reroute links many nodes in the
network qualify to be relay nodes and so these many nodes start to send notify
messages to the source node of the link, and the source node has to process all
the notify messages even though only one relay node is enough to reroute packets
around the link when it fails.

In order to minimize the notification messages sent in the network, we intro-
duce a suppression mode. In the suppression mode, when the relay bits rbits.x[a→b]
in the rerouting table RR.x have the value 11, node x recognizes that it is a relay
node for link a→b and so it sends a notify(x, a→b) message to its next hop for
reaching node a, which either drops the message (as explained below) or for-
wards the message to its next hop for reaching node a. Thus, if the notify(x,
a→b) message reaches, along the route R(x, a), a node y where the relay bits
rbits.y[a→b] in the rerouting table RR.y have the value 11, then node y drops
the notify(x, a→b) message knowing that its own notify(y, a→b) message is
sufficient for node a to have one relay node for link a→b.

If the suppression mode is used in network N1 in Figure 1, then for reroute
link a→b, the notify message from node i is dropped by node h, and the notify
messages from h is dropped by g.

The actions of a node x concerning the sending and receiving of notify mes-
sages are shown in Algorithm 2.

6 Simulation Results

We now evaluate the performance of our IP fast reroute mechanism for various
size of SRLGs (i.e., the number of links that are members of a SRLG) using
simulations. Through simulation, we intend to answer the following questions:
1) What is the repair coverage for various size of SRLGs? 2) what is the efficiency
of suppression under different size of SRLGs? 3) What is the chance that a node
can have multiple relay nodes to choose for various size of SRLGs? Will the
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Algorithm 2: Actions of node x on sending and re-
ceiving relay notify messages

/* ---------sending action----------- */
for sr→sn ∈ rlink.x do1

if (rbits.x[sr→sn] == 11) then2

send notify(x, sr→sn) to nexthop.x[sr];3

/* ---------receiving action--------- */
rcv notify(z, sr→sn) from a neighbor y do:4

if x == sr then5

add z to relay.x[sr→sn]6

else if (rbits.x[sr→sn] == 11) then7

suppress notify(z, sr→sn)8

else9

forward notify(z, sr→sn) to nexthop.x[sr]10
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suppression affect this? 4) What is the overhead of using a relay path, which
may include several relays for links in the same SRLG, instead of using the
re-converged shortest path? How does the suppression affect this?

We conduct our simulations using two general networks, generated using the
BRITE tool [1]. The first network satisfies the power law distribution based on
the Barabasi-Albert (BA) model. The second is a random network based on the
Waxman model. For each toplogy with E edges, we randomly select S edges,
1 ≤ S ≤ 5 that are close to each other to form a SRLG (the number of hops
between the first selected edge and any other selected edge is no larger than 0.6
the maximum number of hops in the network). For S = 1, we count every single
link failure. For S > 1, we generate up to 1000 different SRLG failures and make
sure each SRLG is not a cut of the topology graph.

Let repair coverage be the percentage of source-destination pairs in which,
when the link source→sink of a SRLG used to traverse packets from the source
to the destination fails, the source can reroute around any failed link in the
same SRLG which appears along the path to reach the destination. Figure 2
and 3 show the repair coverage for SRLG failures for BA and Waxman network
respectively. For both BA and Waxman network, no matter what is the size of
the network, the repair coverage for smaller SRLG size is greater than the repair
coverage for larger SRLG size. However, when the network size is at least 100
nodes, the SRLG size does not have much effect on the repair coverage and our
IP fast reroute mechanism can achieve close to 100% repair coverage in these
cases.

We measure the efficiency of suppression using suppress ratio, which is defined
as the percentage of suppressed relay notify messages. As shown in Figure 4 and
5, in both BA and Waxman networks, the size of the SRLG does not affect
the suppress ratio much. If the network size is larger than one hundred nodes,
then the suppress ratio is about 80%. This demonstrates that suppression will
effectively save the processing overhead for the source node and the bandwidth
in the network.

In both BA and Waxman networks, no matter what’s the size for the SRLG,
when the network size is over one hundred nodes and there is no suppression,
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the chance that a source node can find multiple relay nodes to choose from
instead of only one relay node is over 97%, shown in Figure 6 and 7. While
in the suppression mode, since some relay notify messages are suppressed, the
chance that a source node can find multiple relay nodes drops to over 88% in
Waxman networks and to about 80% in BA networks. However, we will show
that the suppression mode will not affect the best relay node in terms of reroute
path length and it also gives a source node better choices in terms of reroute
path length.

For a reroute link, the pre-computed alternative path through a relay node
is not necessarily the shortest path. This is because only the source node of the
reroute link is aware of the failure and no other nodes are. So compared to the
globally re-converged shortest path, IP fast reroute gains the lossless forward-
ing with a possible longer path penalty. However, we show that the penalty is
not significant. Let path stretch be the ratio of the length of the pre-computed
alternative path going through the relay node(s) divided by the length of the
shortest path after re-convergence. When a source node finds that there are mul-
tiple relay nodes for a reroute link, which relay node should the source choose?
We examine three choices in terms of path stretch: the closest relay node to the
source, the farthest relay node to the source and a random relay node.



11

0 100 200 300 400 500 600 700 800 900 1000
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

# of nodes in the network

P
at

h 
st

re
tc

h 
(n

on
su

pp
re

ss
io

n 
m

od
e)

srlg sz=1: closest sz=1: farthest sz=1: rand
srlg sz=3: closest sz=3: farthest sz=3: rand
srlg sz=5: closest sz=5: farthest sz=5: rand

Fig. 9. The average path

stretch when choosing dif-

ferent relay nodes for SRLG

failures in nonsuppression

mode for Waxman networks

0 100 200 300 400 500 600 700 800 900 1000
1

1.2

1.4

1.6

1.8

2

2.2

2.4

# of nodes in the network

P
at

h 
st

re
tc

h 
(s

up
pr

es
si

on
 m

od
e)

srlg sz=1: closest sz=1: farthest sz=1: rand
srlg sz=3: closest sz=3: farthest sz=3: rand
srlg sz=5: closest sz=5: farthest sz=5: rand

Fig. 10. The average path

stretch when choosing dif-

ferent relay nodes for SRLG

failures in suppression mode

for BA networks

0 100 200 300 400 500 600 700 800 900 1000
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

# of nodes in the network

P
at

h 
st

re
tc

h 
(s

up
pr

es
si

on
 m

od
e)

srlg sz=1: closest sz=1: farthest sz=1: rand
srlg sz=3: closest sz=3: farthest sz=3: rand
srlg sz=5: closest sz=5: farthest sz=5: rand
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In nonsuppression mode (i.e., suppression is not applied), the average path
stretch when choosing difference relay nodes for different size of SRLG failures,
in BA and Waxman networks is shown in Figure 8 and 9 respectively. In both
networks, no matter what’s the size of the SRLG failures, choosing the closest
relay node gives the smallest path stretch, less than 1.6 compared to the re-
converged shortest path length, while choosing the farthest relay node gives the
largest path stretch. A random relay has the stretch in between the above two.

Figure 10 and 11 show the corresponding path stretch under the suppression
mode. It is clear that suppression will not affect the path stretch for closest relay
nodes. However, since suppression filters some farther relay nodes which tend to
have larger stretch, the average path stretch for both farthest relay nodes and
the random relay nodes is reduced under suppression mode. So a source can also
randomly choose a relay node with stretch lower than or about 2 in both types
of networks.

7 Related Work

Recently, IP Fast Reroute (IPFRR) has been proposed to recover from failures
as soon as a failure is detected using IP-based schemes [26]. However, exist-
ing proposals, except [27] which requires substantial number of additional IP
addresses, mainly focus on how to handle a single link failure or dual-link fail-
ures [3,4,6,14,16,20,24]. Also, most of existing proposals assume each node has
the knowledge of some global topology information [3,4,6,8,14,16–18,23,24,27].
Instead, our work focuses on shared risk link group failures and assumes that
each node has neither global connectivity information of the network nor addi-
tional global IP addresses information associated with each node. The idea of
precomputing backup paths is also explored for BGP [15,23,25,28,29].

An IPFRR scheme should be able to avoid micro-loops [7, 9, 11]. Francois et
al. [10] and Gjoka et al. [13] evaluate the coverage of several IPFRR mechanisms.

Both Loop-free Alternates [4] and U-turn Alternates [3] pre-computes an
alternate next hop before a single link failure. Since these two mechanisms find
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alternates only among next hops, the coverage is not high even for single link
failures. Tunnels [6] is more generalized than the above two mechanisms in the
sense that it is not limited to only use next hops as tunnel endpoints. But again
it can only handle single link failures and is only designed for link state protocols.
Also it requires a significant number of computations of shortest paths since it
computes a reroute path for each of the neighbors of the sink node.

In Multiple Routing Configurations (MRC) [16], each router pre-computes a
number of topology configurations by removing rerouted links. Failure Insensitive
Routing (FIR) [24] exploits interface-specific forwarding. Both MRC and FIR
focus on single link failures. Failure-Carrying Packets (FCP) [17] uses the packet
header to carry the list of failed links and requires potentially expensive dynamic
computation to route that packet. Path splicing [23] creates multiple routing
trees and allows packets to switch paths by inserting a new packet header. In [20],
Li et al. explored the idea of using relay nodes to achieve IP fast reroute around
single link failures based only on local information. Kini et. al. [14] proposed an
approach to handle two simultaneous link failures by assigning three additional
addresses to each node.

Each node in Not-via [27] needs d additional Not-via addresses for all the
links for which it is a source node, where d is the degree of that node. These
additional IP addresses have to be globally known, even when a link is currently
not intended to be a reroute link. This significantly increases the size of the
routing table and consequently lower the efficiency of forwarding even when
there is no failures. Recent work from Li et al. [18] try to improve the efficiency
of Not-via by aggregation, but it requires special allocation schemes of Not-via
addresses. Enyedi et al. [8] try to reduce the number of Not-via addresses but
they also assume the knowledge of global connectivity information.

8 Concluding Remarks

We have presented an IP fast reroute mechanism for Shared Risk Link Group
failures in routing protocols without global topology information. In our mecha-
nism, any node x can advertise that it needs to be able to reroute around a link
x→y when this link fails. Then we leverage a set of relay nodes, computed in
advance of any link failures, to tunnel the reroute packets around each failed link
right after the detection of a failure. Each node uses a fully distributed algorithm
to decide automatically whether it can serve as a relay node for a reroute link or
not to avoid all link failures in the same SRLG. Notify messages are sent to the
source of a reroute link from relay nodes. We proposed a suppression mode to
greatly reduce the number of notify messages. Moreover, our tunneling scheme
ensures that loops are never formed even when any number of links fail.

Through simulations on different topologies, we confirmed that our mecha-
nism can achieve close to 100% repair coverage in different types and various
size of networks for different SRLG size. The average length of a reroute path
is around 1.5 the re-converged optimal paths. As expected, the suppression is



13

quite effective and cut 80% of notify messages in a network of reasonable size
(≥100).

Our future work includes migrating our IP fast reroute mechanism to interdo-
main routing protocols. Using our mechanism, each AS can potentially leverage
the existing Internet topology to achieve fast reroute around Shared Risk Link
Group Failures, without changing the BGP advertising and decision process.
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