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Abstract. Haptic Modeling of textile has attracted significant interest over the
last decade. In spite of extensive research, no generic system has been
proposed. The previous work mainly assumes that textile has a 2D planar
structure. They also require time-consuming objective measurement of textile
properties in mechanical/physical model construction. A novel approach for
haptic modeling of textile is proposed to overcome the existing shortcomings.
The method is generic, assumes a 3D structure textile artifact, and deploys
computational intelligence to estimate textile mechanical and physical
properties. The approach is designed primarily for display of textile artifacts in
museums. The haptic model is constructed by superimposing the mechanical
model of textile over its 3D geometrical model. Digital image processing is
applied to the still image of textile to identify its pattern and structure. In order
to deal with the non-linearities associated with the textile, a fuzzy rule-based
expert system is deployed. This information is then used to generate a 3D
geometric model of the artifact in VRML. Selected mechanical and physical
properties of the textile are estimated by an artificial neural network with the
textile geometric characteristics and yarn properties as inputs. The neural
network learning and verification and validation processes are carried out by a
sample data set. The mechanical properties are used in the construction of the
textile mechanical model.  The haptic rendered model is generated by
superimposing the physical/mechanical model over the 3D geometric model.
This model has been implemented and rendered in Reachin environment,
provided an interactive Virtual Reality environment where the user can navigate
the graphic 3D presentation of the textile and touch it by a haptic device.
Different samples have been modeled and the whole approach has been
validated. The interface can be provided in both in the physical environment
and through the cyberspace. The validation of method indicates the feasibility
of the approach and its superiority to other haptic modeling algorithms.

Keywords: Haptic, Fuzzy logic, Neural Network, Hand-woven textile

1   Introduction

Haptic Modeling of textile has attracted significant interest over the last decade. In the
work conducted by Govindaraj et al a haptic system for virtual fabric handling
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experience was developed [1]. The approach was limited to static modeling and used
Kawabata machine to calculate the mechanical properties of textile. Another
important project was HAPTEX [2, 3], in which a similar approach for development
and validation of haptic model of fabric was developed.

In spite of extensive research, no generic system has yet been proposed. The
majority of the haptic models developed in the previous work assume a 2D mesh
model for textile which is not an accurate representation of the geometric
configuration of the textile. In addition, they are based on empirical parameters
obtained from textile samples using specialized instruments such as Kawabata system.
The process is often time consuming and elaborate, consisting of manual
measurement of physical and mechanical properties of the artifacts.  The development
of a generic approach for 3D haptic modeling of hand-woven textile artifacts is
pursued in this work.

In the proposed approach, the textile pattern and structure are recognized by digital
processing of the artifact still image. A fuzzy-rule based expert system is developed to
perform the recognition process. The data obtained in this process is employed to
automatically generate the 3D geometric model of the artifact in VRML. The
mechanical properties of the artifact are estimated by processing the textile geometric
characteristics and yarn properties in a neural network system. These mechanical
properties are then deployed in the construction of the textile mechanical model. The
mechanical model is superimposed over the 3D geometric model to construct the
haptic model. The proposed system is validated using a number of artifact samples.

Overall, the work conduced in this study offers a novel 3D generic haptic modeling
for textile artifacts. It can be deployed in museums providing an opportunity for the
visitors to touch unique samples of hand-woven textile artifacts. The approach is cost-
effective, reliable and reproducible, as the haptic modeling of these samples doesn’t
need time-consuming and costly laboratory conditions.

In the remainder of the paper, the image processing method and the fuzzy rule-base
expert system deployed in the construction of the geometric model are described. The
outcome is a 3D geometric model of the artifact in VRML that could be explored in a
virtual reality world viewer. Similarly, the neural network model designed to estimate
the mechanical characteristics of an artifact is presented. The approach is validated
and conclusion is made.

2   Textile Pattern Recognition

A woven fabric has a complicated structure made of the cross combination of the
wrap and weft yarns in a two-dimensional lattice structure. Textile weave pattern
recognition has attracted many researchers since the mid-1980’s. The problem field
could be divided into crossed-points detection that deals with interlacing areas
between wrap and weft yarns and crossed-states detection which determines which
yarn is over the other in the interlacing areas.

Different approaches have been proposed to deal with both problems. The
developed approaches, however, have proved to be inadequate to deal with the non-
rigidity of the hand-woven artifacts. In this work, a new algorithm is developed to
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address such shortcomings [4]. An overview of the approach is provided in this
section.

2.1   Crossed-Points Detection

The methods reported in the literature for crossed-points detection can be categorized
into two groups:

 Employing Fourier filtering techniques to find periodic weave pattern in a
woven fabric image by either identification of the peaks in the power
spectrum image [5-7] or finding the peak points of the autocorrelation
function of the gray level data in warp and weft directions [8].

 Identifying the peaks in accumulation gray level values in vertical and
horizontal directions pixels [9, 10].

In this work, the second approach is deployed and a piecewise-linear algorithm is
introduced to model the non-linearities in the structure of the fabric. The image
features – representing the peaks of local accumulating gray level values for each
vertical and horizontal image slice – are extracted. A fuzzy rule-base engine is then
applied to process the image features and identify the structure of the artifact.

Fig. 1. Image slicing and accumulating gray level curve

The image matrix ωm*n is sliced horizontally and vertically. The image slices SVi in
vertical and SHi in horizontal directions are defined as elements of ω matrix which is
represented by a ‘_’ operator in (1) and (2), where k is the thickness of the image
slice:

SVi = ω i*k,0 _ω i*k,n_ ω (i+1)*k,0 _ω (i+1)*k,n (1)

and   0 ≤ i ≤ 1





k

m
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SHi = ω 0,i*k _ω m,i*k_ ω 0,(i+1)*k _ω m,(i+1)*k (2)

and  0 ≤  i  ≤

By considering the Ωx,y  the gray level conversion function of the pixel in position
x and y, αi a vector with m elements as the accumulating gray level values for the
vertical slice i, SVi  could be calculated as:

for 1 ≤ j ≤ n (3)

And the same for βi a vector with n elements as the accumulating gray level values
for the horizontal slice i, SHi:

for 1 ≤ j ≤ m (4)

Finally, Feature point set µvi for the vertical slice i and µhi for the horizontal slice i
are calculated as below:

for 1 ≤ i ≤ m (5)

for 1 ≤ i ≤ n (6)

While ideally, the minimum peaks of the autocorrelation show the yarn border in
that section, variation in artifact pattern, sometimes results in false peaks. Hence, a
special filter is developed to identify real peaks in the yarn boarder. Figure 2
illustrates this filtering mechanism.

Fig.2.  Intelligent filtering mechanism for removing the false peaks and picking the real peaks
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In addition, a mechanism is also required to locate the corresponding points in
different slices belonging to one specific yarn boarder. At this stage, some peak points
might be merged as one point or some might be identified as false peaks.

Accordingly, a fuzzy rule based algorithm is developed to perform the following
actions:

1. Local Filtering: filtering the false maximum and minimum peaks and pick
up real peaks in each slice.

2. Global Combination: Merging some close points as one point and
removing false points based on the global knowledge of the whole artifact
rather than only a slice.

3. Edge Detection: locating corresponding points in different slices which
belong to a specific yarn boarder.

For this algorithm to work effectively, the maximum peaks of the autocorrelation
function should be also calculated. It is expected that a max peak should be seen
between two sequential minimum peaks which presents somewhere on top of the yarn
where the light is maximum due to yarn convexity.

Figure 3 demonstrates the Global Combination mechanism. The distance is
described by a distance fuzzy variable and merging of the points is carried out by the
algorithm.

Fig.3. Global combination mechanism

Figure 4 shows the edge detection mechanism which locates corresponding points
in different slices belonging to a specific yarn boarder. This mechanism searches for
the points as a backtracking algorithm in a tree structure. It starts from the bottom left
minimum peak in the artifact and finds different paths of closest points based on their
fuzzy distance. The mechanism continues by considering next points recursively. This
process creates a virtual tree. The fuzzy algorithm selects a path in the tree from root
to leaves with the best estimation as a yarn boarder. The selected points are removed
from the feature point set and the mechanism continues from next bottom left point.

Combination
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The algorithm ensures that a maximum peak point curve is located between two
neighboring yarn boarders.

The yarn boarder gradient pattern is known and could be used for predicting the
yarn edge path in tree structure (Figure 4). This gradient prediction is illustrated in
Figure 5. The short lines indicate the gradients of the edge curve. The narrow cross
sections show the locations where weft and warp are floating over each other. The
shape is changing due to friction forces and compression in these areas. Finding the
next point in the path has to satisfy the gradient pattern and the fuzzy rules.

Fig. 4.  Edge detection mechanism

Fig. 5. Gradient pattern for yarn boarder

The distance fuzzy variable membership function is shown in Figure 6. The
Fuzzification of the distance is carried out by calculating the distance of point p
relative to all the points in slice i+1 and normalizing the distances between 0 to 1. The
fuzzy set consists of very small, small, small-medium, large-medium, large and very
large values.

In the final stage of the modeling, a quadratic spline interpolation is fitted to the
yarn edge points for each identified yarn in weft and warp direction.

After tuning the rules, fuzzication & defuzzication, and parameters estimation, the
system is validated for 21 samples and has proved to be quite effective. Manual
comparison has shown around 85% accuracy for the model. The model errors are
found in artifacts with patterns or complicated woven structures.

Yarn
boarder

A part of
examined

tree
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Fig. 6. The distance fuzzy variable membership function using for Fuzzification

2.2   Crossed-States Detection

A variety of methods have been suggested in the literature for crossed-states detection
including employing texture orientation features in each one of the detected cells [11],
normalized aspect ratio of an ellipse-shaped image at crossed points of the fabric [12],
fuzzy c-means clustering [9, 10], and Fourier image analysis techniques [5, 7, 13-15].
The outcome of this stage is a weave pattern diagram showing the warp over weft or
weft over warp in each cell of cross points.

In this study, the yarn edges-texture orientation features of each side of the cell are
calculated for each detected cell. The derived features are then transformed to
frequency domain by deploying Fast Fourier Transform. The Frequency spectrum is
finally analyzed for crossed-states detection process. This method is novel and has not
been explored in textile industry for this problem.

Figure 7 illustrates the image processing steps applied to two samples of hand
woven textiles of (a) and (b). Indexes 1 to 3 represent the following stages:

 Index 1: The original scanned images of textiles.
 Index 2: Textile image with its vertical and horizontal feature points.
 Index 3: Fuzzy rules implication for finding the yarn edges.

A typical weave pattern diagram produced in crossed-states detection process is
shown in Figure 8. Black cells are warp float areas and white ones are weft float
areas.

The proposed method is verified by applying it to 21 artifact samples. The texture
orientation method in frequency domain is evaluated with 87% accuracy compared
with conventional methods with less than 70% accuracy.
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a.1 b.1

a.2 b.2

a.3 b.3

Fig. 7.  Crossed-points detection for two samples a and b

(a) (b)

Fig. 8. Weave pattern diagram produced in crossed state detection
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3   Textile 3D Geometric Model Generation

The textile structure and the measurements made of the weft and warp in pattern
recognition process are deployed in developing the 3D geometric model of the fabric.
The weft or warp yarn flow is modeled in two sections:

 The sinusoidal section that is used in transition flow when a weft or a wrap
flows over or below the corresponding yarn

 The linear section that is used in constant flow
The weft and warp yarn cross-section is modeled as an ellipsoid with its

dimensions set according to the pattern identified in the textile.  Variation in the shape
of the ellipsoid occurs due to internal, friction and compression forces between warp
and weft yarns of the textile.

Figure 9 illustrates the linear flow section, sinusoidal flow section and yarn cross
sections in both wrap and weft directions.

Weft/Warp Flow        Yarn Linear Flow

Yarn Sinusoid Flow

Warp/Weft Ellipsoid Cross-section

Fig. 9. Weft/Wrap flow in textile 3D geometric model

Defining weft and warp yarn diameters by dweft and dwarp, respectively, the
amplitude of weft and warp sinusoidal flow, Aweft and Awarp should satisfy (7):

(7)

Aweft/Awarp ratio is dependent on the weft and wrap yarns raw material, composition
and dimension. It determines the tension and compressibility of yarn and can be
estimated empirically.

The weft and warp sinusoidal flow curve in 3D Cartesian coordinate space could
be formulated as follow:

(8)

(9)

2
warpweft

warpweft

dd
AA




z   A weft Sin ( 2  x
d weft  d warp

)

)
2

(
warpweft

warp dd

y
SinAz




 
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The flow of the center of weft and warp yarns in x and y directions are shown by
(8) and (9). By adding the ellipsoid cross-section for each specific point in curves, the
textile 3D geometric model is generated. This model is converted to VRML by a
developed automatic VRML generator. The VRML geometric model is displayed as a
virtual reality world that can be explored by user.

Figure 10 demonstrates the 3D geometric model for the two artifacts samples.
Figure 11 shows an artifact VRML 3D geometric model in the virtual reality viewer.
The textile texture also could be added to the model for a realistic representation of
the sample in the virtual reality world.

(a) (b)

Fig. 10. 3D geometric model for: a) A plain artifact sample b) A twill artifact sample

Fig. 11. An artifact VRML 3D geometric model in Virtual Reality Viewer

4 Textile Mechanical Model Generation

The Fabric Hand of a cloth or garment is defined as the overall fabric quality
perceived through operations such as touching, squeezing, or rubbing [16]. Many
factors affect the Fabric Hand including flexibility, compressibility, elasticity,
resilience, density, surface contour (roughness, smoothness), surface friction and
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thermal characteristics of the fabric. The properties of the textile raw material, yarn
structure, planner structure (woven or knitted pattern) and finishing treatment could
be employed in a mechanical model for predicting the fabric hand and its factors
including textile mechanical properties [17]. In many industrial applications,
empirical modeling methods employing Kawabata machine are being deployed for
fabric hand assessment rather than analytical or empirical models for estimating the
textile physical and mechanical properties.

In this work, the mechanical properties of the textiles are estimated via an artificial
neural network. In this stage of the work, the mechanical properties, which play a
significant role in tactile perception of the hand-woven textile, are calculated. This
model is faster and cheaper than textile empirical models and could be easily
deployed in haptic modeling of textiles.

The neural network system developed in this study to recognize the textile physical
properties is a three layer Perceptron. The unsupervised back-propagation learning
method is used for tuning the system weights for any specific problem. The first layer
has 16 neurons for 16 inputs. The output layer has 3 neurons for 3 outputs. The
hidden layer size is different for any specific problem. There are different ways
available to estimate the size of the hidden layer. One of the famous empirical rules is
the mean of input and output layer size. In this approach, different hidden layer sizes
from 5 to 15 neurons are examined to find the minimum error in back-propagation
training. The average of input and output layer size is 10 and hence a boundary
around this point is selected. The hidden layer, learning ratio and primitive weights
are estimated based on the training data. The system inputs include yarn raw
materials, weft and warp dimensions and weft and warp structure. The outputs of the
system include static friction, dynamic friction and compressibility.

In the training system, the raw materials are limited to natural materials – wool,
linen, cotton and silk.  The yarn dimension expressing the average diameter and the
yarn structure is limited to yarn toughness indicator that encapsulates the yarn
structure parameters and yarn degree of twist. Figure 12 demonstrates the system
architecture for a specific weave pattern.

-Weft Material:
1. Wool percentage
2. Linen percentage
3. Cotton percentage
4. Silk percentage

-Weft Structure
1. Number of filaments
2. Degree of twist Static Friction
3. Texture level
4. Thickness Dynamic Friction

-Warp Material:
1. Wool percentage Compressibility
2. Linen percentage
3. Cotton percentage
4. Silk percentage

-Warp Structure
1. Number of filaments
2. Degree of twist
3. Texture level
4. Thickness

Fig. 12.   Neural Network system for textile mechanical & physical properties prediction
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5 Haptic Model Generation

The haptic model is generated by superimposing the textile mechanical model over
3D geometric model. The implementation is achieved through Reachin computing
platform. The Reachin API is a multi-sensory rendering engine that integrates visual
and haptic rendering through the use of one single scene graph. It parses the graph
and provides the 3D presentation of an object as well as providing tactile perception
for the world. It is system and haptic device independent which makes it suitable for
future applications with other haptic devices. Reachin API is based on the concept of
the scene graph. A scene graph is a hierarchical data structure that describes a 3D
scene. It holds the geometry of all objects in the scene and their relative positions,
appearance attributes such as color, transparency, textures and surfaces and also light
sources, viewing position and information about the scene. A scene graph provides a
framework for managing objects in a scene, and makes it easy to express the
relationship between those objects [18].

Several hand-woven artifacts have been modeled with the proposed methodology.
These models have been rendered in Virtual Manipulation Laboratory at University of
Wollongong and the tactile interaction has been achieved through a 6 DOF Phantom
haptic device. Figure 13 illustrates the 6 DOF Phantom device which has been
employed in the laboratory for tactile interaction.

Fig. 13. The 6 DOF Phantom haptic device

6   Validation

The 3D geometric model has been generated for 21 samples. From them, 13 twill and
plain samples have been selected for mechanical/physical model generation. The
haptic model generation method developed in this work is applied to all the samples.
In addition, other haptic models using  Bumpmapsurface and FrictionImageSurface
from Reachin have been generated for comparison and validation. Several
experiments were designed and implemented to examine the model validity and
performance of the methodology.
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In one of the experiments, 5 observers were selected. Each one was instructed to
touch the 13 hand-woven artifact samples and the haptic models developed for them
by using the Phantom haptic device. The observers were given 3-5 minutes to
examine each real artifact and the corresponding haptic model. For accurate
comparison, a pen with the same shape as haptic device pen was given to each
candidate. The observers were asked to touch the real artifact with the pen and the
haptic model with Phantom device. They would then give a score of 0 to 10 for each
sample, with 0 indicating no similarity and 10 meaning complete similarity. The
candidates were told to pause for 2-3 minutes between samples. The experiment took
about 1.5 to 2 hours for each observer. They were then asked to repeat the experiment
for Bumpmapsurface and FrictionImageSurface methods in the following day. The
sequence of samples was changed in each set of experiments, eliminating the previous
judgment on the result.

The average of similarity scorers gathered from five candidates for 13 samples are
provided in Table I for each method.

Table I - The subjective experiment result for 13 samples and 3 different methods

Sample number 1 2 3 4 5 6 7 8 9 10 11 12 13
The Method

Average
FrictionImageSurface 3.6 4.2 2.6 6 5.2 4.8 6.2 4.4 3.2 3.6 4.2 5.4 6.4 4.6

BumpmapSurface 4.2 3.8 3.4 5.2 6.4 5.6 5.8 4.2 5.6 3.2 5.8 7.4 6.8 5.2

Proposed method 4.4 7.2 6.8 8.2 7 8.8 7.8 6.6 7.8 6.8 8.4 8.8 7.2 7.4

As shown in the table, the subjective assessment of the three methods has
identified the highest similarity score for the method proposed in this work using the
developed 3D geometric and physical models. The FrictionImageSurface method is
the worst one. The proposed method shows an average similarity score of 74% which
is about 60% lead over FrictionImageSurface method and around 40% improvements
over BumpmapSurface.

In the second experiment, each observer was exposed to 3 artifact samples and the
haptic model of one of the samples. The model was randomly chosen and the
observers were not informed of the corresponding sample. The observers were then
expected to identify the sample by examining both the model and the samples. Each
candidate was given three minutes for each model. The experiment was repeated for
FrictionImageSurface and BumpmapSurface haptic models as well as the model
developed in this work. Fifteen haptic models were observed by each candidate, 5 in
each group. Therefore 25 tests were carried out for each haptic group.

The overall results are provided in Table II, illustrating the number and percentage
of true identification for each haptic model.
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Table II - Number of True identification in 25 tests for each haptic group

Number of True
Identification (25 total ) True Identification Percentage

FrictionImageSurface 12 48%

BumpmapSurface 16 64%

Our method 21 84%

As highlighted in the table, identification based on the proposed method has again
score the highest with true identification percentage of 84%. The true identification
rates for FrictionImageSurface and BumpmapSurface are only 48% and 64%
respectively. The result shows almost 75% and 31% improvements over
FrictionImageSurface and BumpmapSurface respectively.

Both experiments prove the validity and efficiency of the proposed model with
acceptable success rates.

7 Conclusion

The development of a generic approach for 3D haptic-rendered modeling of hand-
woven textile artifacts was reported in this paper. The proposed methodology relies
on processing of the still images of the artifact using computational intelligence as
well as the knowledge of the artifact material and yarn structure. Effort was made to
ensure that the developed mechanism was a faster and more reliable alternative for
textile modeling compared to the costly and time consuming manual fabric hand
assessment. The approach was also designed to build the haptic model of the textile
based on an accurate 3D geometric model of the artifact rather than conventional 2D
mesh structure used for graphical representation.

Future work will concentrate on pattern recognition and neural network
enhancement as well as customizing the physical simulator and haptic render engine
for hand-woven artifacts.
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