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Abstract Geolocation information is not only crucial in conventional crime in-

vestigation, but also increasingly important for digital forensics as it allows for

the logical fusion of digital evidence that is often fragmented across disparate

mobile assets. This, in turn, often requires the reconstruction of mobility pat-

terns. However, real-time surveillance is often difficult and costly to conduct,

especially in criminal scenarios where such process needs to take place clandes-

tinely. In this paper, we consider a vehicular tracking scenario and we propose an

offline post hoc vehicular trace reconstruction mechanism that can accurately re-

construct vehicular mobility traces of a target entity by fusing the corresponding

available visual and radio-frequency surveillance data. The algorithm provides a

probabilistic treatment to the problem of incomplete data by means of Bayesian

inference. In particular, we realize that it is very likely that a reconstructed route

of a target entity will contain gaps (due to missing trace data), so we try to proba-

bilistically fill these gaps. This allows law enforcement agents to conduct off-line

tracking while characterizing the quality of available evidence.
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1 Introduction

Wireless mobile devices such as mobile phones and laptops can provide useful geolo-

cation information. However, while such data enables novel ways of tracking mobile

entities, collecting it from multiple sources and logically correlate it often creates new

challenges for digital forensics.

Generally, tracking can either be online or offline. Online tracking involves observ-

ing the movement of a target entity in real time and is usually reactive (and adaptive)

according to the target’s behaviors. Offline tracking, on the other hand, entails the ex-

traction of the target’s movement traces from raw tracking data to be analyzed. How-

ever, offline tracking, in most cases, encounters a problematic issue that we call tracking

gaps. These gaps represent missing tracking data over particular areas/periods where

tracking of the target was not possible, usually due to tracking resources constrains. In

this case, it is important to try filling these gaps by probabilistically guessing the routes



the target would have most likely taken between the end points of the gaps. For a gap,

these end points are called the Ingress, which is the point at which tracking of the tar-

get was lost marking the beginning of a gap, and the Egress, which is when tracking

later resumed marking the end of that gap. While such scenarios are certainly impor-

tant to consider for tracking individuals, we instead discuss vehicular tracking since this

is the most common means of transportation. Vehicular tracking data can be collected

by explicitly tracking the target vehicle, or by observing data from the existing traffic

infrastructure (e.g. CCTV) that is not originally meant to be involved in a tracking pro-

cess. Either way, we assume that this data was collected passively since this is required

by most law enforcement applications. Such data, and beside containing tracking gaps,

will certainly exhibit different types of measurement errors, thus we develop a proba-

bilistic method based on basic Bayesian inference to reconstruct the target trace, noting

that this method can be adapted for an online mobility prediction too, which is a natural

extension to an offline reconstruction, but this is beyond the scope of this paper.

This paper is organized as follows: in section 2 we briefly review some related work.

In section 3 we discuss the feasibility of fusing RF and visual traces to minimize the

number of tracking gaps in a target’s trace. The trace reconstruction algorithm is pro-

posed in section 4, followed by a discussion about its accuracy in section 5. In section

6 a few simulation results are presented, and finally, the paper concludes in section 7.

2 Related Work

Incomplete (or missing) data is a common problem in many applications. Expectation-

Maximization and Data Augmentation methods (along with their improved variants) are

among the most popular statistical treatments for the missing data problem [1]. Simi-

larly, scene reconstruction (which usually deals with missing data) has been a highly ac-

tive area of research over the past few decades, especially for forensics and crime inves-

tigation purposes. In general, most of the research in this area involves reconstructing

scenes from images. For example, in [2] Calbi et al. proposed a set of computer-vision-

based algorithms that are able to reconstruct a 3D scene of multiple moving objects.

However, this system depends on pre-installed camera entities surveilling the area to be

reconstructed. Moreover, in [3], Conaire et al. discussed how to fuse image-based and

RF-based localization to improve the overall accuracy of the process. The authors tested

their mechanism in a museum environment where visitors are equipped with devices

containing a portable camera. The device can take photos for its current location and

compare them with a database of images to identify its current location. This informa-

tion is then fused with an estimation of signal strength from several wireless networks

around the museum; again, signal strength histogram was create for various locations

in the museum and stored in a database to be compared with the measurements.

Although most of these algorithms were proposed to track individuals, we are ex-

plicitly concerned with vehicular tracking. Examples of such works is presented in [4]

by Brakatsoulas et al. who discuss the feasibility of reconstructing the movement pat-

terns of objects by observing their GPS tracking information. Their algorithm adopts the

so-called map matching technique where the tracking information of the objects (which

are vehicles in this case) are analyzed and applied to a road-map. This paper adapts



a somewhat similar approach to map-matching but for the purpose of reconstructing a

full tracking trace of a particular entity, not quite concerned about accurate localization

since it suffices to know that a target vehicle has been in a particular roadway to draw

conclusions about how its traces can be reconstructed.

3 Trace Fusion

Vehicular traces are records containing movement information of vehicles over a partic-

ular area and during a specific period of time. These traces can be collected by various

tools, like GPS and Radar. However, data from other tools like CCTV (Closed Circuit

Television), which are not originally tailored for tracking, can be used to improve the

existing tracking traces. In this paper, we assume that we have two sets of tracking data,

one collected by traditional tracking processes (see [5] for a survey on active tracking,

and [9] for a work on passive vehicular tracking) and another retrieved from CCTV

cameras that happen to be surveilling the tracking scene – we will call the first data

RF (Radio Frequency) tracks, and the second visual tracks. The aim of this preparatory

phase is to fuse RF and visual tracks of a target. Note, however, that this is only an

auxiliary phase and is not necessarily required to proceed with the reconstruction algo-

rithm, that is, we assume that both RF and visual tracks exhibit tracking gaps, but when

fused, we hope that the number of these gaps is minimized.

Interpreting RF tracking data is straightforward, as a minimum, each record consists

of time, vehicle ID and location, and we aim to simplify visual tracks (represented

by images taken from CCTV cameras) to be consistent with the RF tracks which in

turn will simplify the fusion process. Assuming prior knowledge of the fixed locations

of the CCTV cameras and their somewhat narrow recording angular distance, we can

estimate the location of a detected target to be the location of the detecting camera.

One possible detecting method is by the plate number of the vehicles and detect the

target once his plate number is observed, this can be done by capturing live images and

compare them to a database of images containing the required plate number. Methods

like SURF [6], perform such image-based detection by identifying interest points in the

images. The main difference between RF and visual tracks, though, is that RF tracks

represent continuous movements of the vehicle for a period of time (represented by a

set of chronological tracking records), while the visual tracks represent fixed locations

of the target where it was detected.

In this fusion process, we further aim to construct a trace of the target containing

gaps only between intersections. However, real tracking information may not satisfy

this requirement and can possible loose track of the target half way through roadways.

In such cases, the available tracks for these roadways (with incomplete traces) may

be: (a) visual only, (b) RF only, or (c) both RF and visual. In all these situations, we

run a prediction algorithm to estimate the time it took the target to reach the next in-

tersection and thereby filling the whole roadway. However, situation (a) provides very

little information for this algorithm to work, so such roadways are ignored and marked

as semi-incomplete which basically indicates that the target was observed in this road-

way (this information may prove useful in the gap-filling algorithm; see section 4). In

situations (b) and (c), and for simplify the description, we assume that there are only



single RF and/or single visual tracks per roadway, noting that the algorithm can easily

be extended to consider multiple RF/visual tracks. The prediction algorithm is based on

estimating the speed of the target over the period covered by the available tracking in-

formation which will then be used to predict the time it will take the target to reach the

next intersection given the remaining distance of the corresponding roadway. In situa-

tion (c), if the visual track is within the RF track range, it provides no extra information

(essentially becoming situation (b)) and the visual tracks can be ignored, but if the RF

and visual tracks are apart, we extend the range of the RF to include the visual track.

Usually, the longer the available tracking range, the better prediction we can expect.

After connecting RF and visual tracks, the result is a tracking range and the predicted

time to the next intersection can be calculated as follows:

ti =
(d(R)1 − d(R)0)(n− (d(R)0 + d(R)1))

t(R)1 − t(R)0
(1)

where: d(R)0 and d(R)1 denote the beginning and the end of the tracking range, re-

spectively, and t(R)0 and t(R)1 denote the times at which the tracking range started

and ended, respectively. If d(R)0 6= dI,i (where dI,i is the beginning of the roadway),

then this means that the tracking range didn’t start at the beginning of the roadway, so

we need to do a backward time prediction (connecting the beginning of the range with

the beginning of the roadway) as well as a forward time prediction (connecting the end

of the range with the end of the roadway), which can easily be done in a similar manner.

Furthermore, if d(R)1 = dE,i (where dE,i is the end of the roadway), then only back-

ward prediction is required. In any case, once we know the average speed of the target

(which we can easily be calculate from d(R)0, d(R)1, t(R)0 and t(R)1), then given a

distance, we can modify equation 1 to compute the time it would take the target to drive

that distance, regardless of whether it is forward or backward.

4 Trace Reconstruction

Even after RF-visual fusion, the target’s tracking records will still most likely include

tracking gaps. In this section, we propose a 2-phase algorithm to probabilistically fill

such gaps. To simplify the discussion, we assume that the underlying layout of the

tracking scene resembles a Manhattan grid (see figure 1), in phase 1, the two end points

(Ingress and Egress) of a gap along with all possible routes between them are identified.

Then in phase 2, and based on the target’s available tracking traces, the driving behav-

iors of the target is analyzed and used to fill the gaps by selecting the connecting routes

that the target would most likely have taken through these gaps.

4.1 Phase 1: Routes Identification

In this phase, the end points, PI,Gi and PE,Gi (the Ingress and Egress, respectively),

of a gap, Gi (where i = 1, 2, .., n for tracking trace with n gaps), along with the pos-

sible routes between PI,Gi and PE,Gi are identified assuming that PI,Gi and PE,Gi
correspond to intersections. However, it may be computationally expensive (or even

infeasible) to identify all the possible routes between PI,Gi and PE,Gi when having a



large tracking area, regardless of the size of the gap. Thus, we restrict the area under

consideration by setting boundaries around the tracking gap, this bounded area is called

search area and we expect that this area will cover the most probable routes a target

would take through the gap. Figure 1 visually illustrates a sample tracking trace of a

target with four tracking gaps. Since we assumed that the tracking area is a Manhattan

Figure 1. Sample Scenario

grid, the search area will be of a rectangular/square shape containing both PI,Gi and

PE,Gi . We consider two situations for the locations of the PI,Gi and PE,Gi (we will

refer to intersections as vertices and roadways as edges):

– Aligned Ingress/Egress: if PI,Gi and PE,Gi are either aligned horizontally or ver-

tically, they form a straight line, but it is naive to assume that the target used that

route to travel from PI,Gi to PE,Gi . Hence, we widen the search area to include

the routes through the intersections above and the below (or at the right and left of)

PI,Gi and PE,Gi . The search area is then bounded by the rectangle/square whose

vertices are: PI,Gi − 1, PI,Gi + 1, PE,Gi + 1, PE,Gi − 1 where +1 and −1 imply

the above and below (or right and left) intersections relative to PI,Gi and PI,Gi ,

respectively. Finally, all these vertices are marked.

– Diagonal Ingress/Egress: if PI,Gi and PE,Gi are neither aligned horizontally nor

vertically, they form a diagonal line and the search area is bounded by the rect-

angle/square whose vertices are: PI,Gi , PI,Gi + 1, PE,Gi , PE,Gi − 1 or PI,Gi −
1, PI,Gi , PE,Gi + 1, PE,Gi , depending on the positions of the Ingress and Egress

relative to each other. Finally, all these vertices are marked.

Once the four vertices bounding the search area are identified (and marked), they

are connected. All the vertices that these connection lines pass through are then marked

too indicating that they are part of the bounded search area; we call all marked ver-

tices search vertices. We then propose an algorithm, called Bounded Route Counter

(BRC), to find all the routes between PI,Gi and PE,Gi that are within the search area.

The BRC algorithm is resembles a flooding (or broadcast) algorithm [7]. In the con-

ventional flooding algorithms, the goal is to deliver a message to all nodes within a

particular area by configuring nodes to forward every message it receives to all other



nodes expect the node it received the message from. Similarly, BRC uses a message-like

broadcast mechanism to discover the routes between PI,Gi and PE,Gi . When BRC al-

gorithm is first executed at PI,Gi , it generates as many messages as there are exit points

attached to PI,Gi , each message represents a separate flow. These flows then duplicate

or triplicate at every intersection they reach as long as it is a search vertex. This process

continues until all flows are terminated. A flow terminates when it reaches: (1) a non-

search vertex, (2) the PI,Gi or (3) the PE,Gi . When a flow terminates it raise a special

tag with a value of 1, if the flow reached PE,Gi , 0 otherwise. If the termination value

was 1, the corresponding flow sends a message back to PI,Gi reporting its traversed

path. Algorithm 1 illustrates the BRC algorithm.

It is easy to see that the algorithm will both terminate and find all possible routes

from PI,Gi toPE,Gi (that are within the search area). Initially, the algorithm is executed

at PI,Gi where it has four possible directions to send the flows through (though, follow-

ing the flooding algorithm rules, it can’t send a flow backward). At least one flow will

hit a search vertex and will further propagate since at least one direction out the PI,Gi
leads to a search vertex. Also, since a flow can’t terminate as long as it is propagating

through search vertices and that all vertices will propagate a received flow out all their

possible directions, it is guaranteed that all search vertices will be visited and only flows

that terminate at the PE,Gi will return to the PI,Gi .

Algorithm 1 Bounded Route Counter Algorithm

1: PI,Gi ← Ingress {identify Ingress}
2: PE,Gi ← Egress {identify Egress}
3: Links← array {which routes connect PI,Gi and PE,Gi}
4: exitPoints← no. of exit points attacked to a vertex, usually 4

5: markSearchV ertices(PI,Gi , PE,Gi)
6: flood(PI,Gi) {begin the flooding process}
7: label Loop

8: for i = 1 to i = exitPoints− 1 do

9: if NonSearchVertexReached = True then

10: continue

11: else if IngressReached= True then

12: continue

13: else if EgressReached = true then

14: addRoute(Links, i) {add route to the Links array}
15: continue

16: else if SearchVertexReached = True then

17: Tag {tag to becomes a search vertex}
18: flood(i)
19: goto Loop

20: end if

21: end for

We note that due to the visual-RF fusion process, we expect that the size of the

search areas is minimized, and so adopting more sophisticated algorithms, such as



branch-and-bound, will probably just slightly enhanced the efficiency of the whole route

identification process at the cost of unnecessary overall complication.

4.2 Phase 2: Routes Analysis and Selection

At this stage, all routes between PI,Gi and PE,Gi are identified; we will denote the

routes as Rij , where i = 1, 2, ..., n and j = 1, 2, ..., f(Gi), for the jth route of the ith

gap. Also, each Rij consists of f(Rij) roadways, where f(Rij) = 1, 2, .... The function

f can be thought of as an overloading function which behaves differently depending on

its input, that is, f returns the number of routes through a gap when given that gap (e.g.

f(Gi)), or the number of roadways forming a route when given that route (e.g. f(Rij)).

In this phase we analyze every route identified in phase 1 individually and estimate

the time the target would most likely spend when traveling between PI,Gi and PE,Gi if

he use each route, and compare it to the actual time difference between PI,Gi and PE,Gi
as obtained from the original incomplete tracking traces. These analyses are based on a

basic Bayesian inference by first studying the driving behaviors of the target and then

assign probabilities for each possible route through the gap. By investigating the target’s

driving behavior, we essentially try to devise a mobility model to identify patterns in

the target’s movement, which is then used in the route selection algorithm. However,

prior to the route selection algorithm, we first check whether any of the routes contains

semi-incomplete roadways. Recall from section 3 that a semi-incomplete roadway is

a roadway in which the target was observed at but couldn’t be included in the RF-

visual fusion process. If a semi-incomplete roadway falls between PI,Gi and PE,Gi ,

and since we know that the target was indeed in that roadway, we can safely ignore any

route not passing through that roadway, which minimizes the number of routes under

consideration. Once the possible routes are identified, the algorithm proceeds in 5 steps:

Step 1. After identifying the routes and the roadways each route is composed of, we

search the available traces of the target for roadways with similar lengths as those in

the routes between PI,Gi and PE,Gi . Then, we calculate the mean (average) of the

times the target spent driving those roadways and assign the result to the corresponding

roadways of the gap’s routes. In this step, we aim to find the mean and variance of the

target’s driving time for each route through the gap. Suppose we have a route Rij that

consists of f(Rij) roadways, then its mean is:

µRi
j

=
1

f(Rij)

f(Rij)
∑

x=1





1

S(x)

S(x)
∑

y=1

tE,y − tI,y



+ ωx (2)

where S(x) is the number of roadways from the available target’s traces with the same

length as roadway x, (x = 1, 2, ..., f(Rij)), and ω is the delay factor which may be

different for different roadway, see section 5 for a discussion about how to model this

parameter. Since it is easy to extract information about roadways with available tracking

information, it is possible to find when the target entered and existed each one of these

roadways (tI,y, tE,y , respectively, for roadway y). Next, we calculate the corresponding

variance of every route as follows:
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(3)

We then use Bayes’ theorem to calculate the probabilities that the target took each

route between the Ingress and the Egress of a gap, and select the route with the highest

probability as the connecting route. We base our probability calculations on the time

difference between the Ingress and the Egress of the gap tGi = tE,Gi−tI,Gi as obtained

from the original trace, that is, for every route, we calculate the probability that the target

took that route given the time we obtain by observing the times at PI,Gi and PE,Gi :

P (Rij |tGi) =
P (tGi |R

i
j)P (Rij)

P (tGi)
(4)

where: P (tGi |R
i
j) is the conditional probability that given the target took the route Rij ,

he spent tGi driving it; which is calculated for every route (with a fixed tGi). P (Rij)

is the prior probability that a target will take the route Rij , and P (tGi) is the marginal

probability. Steps 2 to 4 below show how these probabilities are calculated.

Step 2. Conditional probabilities: the probability that the target spent the time tGi while

driving from PI,i to PE,i through gap Gi given that he took route Rij is:

P (tGi |R
i
j) =

1
√

2πσ2
Ri
j

exp



−
(tGi − µRi

j
)2

2σ2
Ri
j



 (5)

This probability is calculated using Gaussian probability density function assuming that

the underlying process is Gaussian [8], that is, the driving behavior of the target will

most likely follow a Gaussian distribution or can be estimated as Gaussian. In fact, it

is easy to see that this process is Gaussian because typical driving behavior is to speed

at the middle of a roadway and slow down at the beginning/end of that roadway, while

driving with an average speed elsewhere.

Step 3. Prior probability: since we don’t have enough information to model the target’s

preferences, the probability that the target selects a particular route (prior probability)

through a gap is uniform for all available routes, and can be calculated as follows:

P (Rij) =
1

∑f(Gi)
x=1

(6)

where f(Gi) is the total number of routes through the gap Gi. Although we assumed

that taking any route is equally likely, in practice and in some situations, some routes

are more likely to be taken by the target than others. This may be due to traffic flow

condition for example, see section 5 for a discussion about such factors. Another way

to model this can be done by adopting a mobility prediction algorithm, such as that

presented in [9] which predicts the direction a target vehicle would most likely take

out an intersection by observing its current lane as it is approaching that intersection.

However, carrying out such algorithms is difficult for offline tracking.



Step 4. Marginal probability: the marginal probability P (tGi) is the sum of the con-

ditional (step 2) and prior (step 3) probabilities of all the routes and is calculated as

follows (the marginal probability acts as a normalizing constant in the sense that it

makes sure that all the Bayesian probabilities of the routes will sum up to 1):

P (tGi) =

f(Gi)
∑

j=1

P (tGi |R
i
j)P (Rij) (7)

Step 5. Finally, and using equation 4, we can now calculate the Bayesian probabilities

for each route and select the route with the highest probability as the most likely route

the target would have taken through the corresponding gap.

5 Estimation Accuracy

The accuracy of our reconstruction algorithm is influenced by a number of factors,

mainly concerning the accuracy of the tracking data collection. Beside the conventional

RF measurement errors, it’s very likely that the tracking traces are collected by several

entities, so unless these entities are tightly synchronized, there will be timing errors

among the recorded traces. Traffic-wise, the traffic delay factor ω (which models the

various delays sources) influences the accuracy of the algorithm, and is explicitly used

in equations 2 and 3. Examples of factors influencing ω are:

Roadways lengths : routes are most likely composed of several roadways that are usu-

ally of different lengths. However, while the accumulation of the lengths of the road-

ways that form a route is representative to the distance between the Ingress and the

Egress through that route, the speed of the movement through this route is affected by

the acceleration and deceleration during the journey and around the intersections con-

necting the route’s roadways. Hence, the speed of the target should be estimated for the

individual roadway as oppose to the speed over the whole route.

Roadways speed limits : every roadway restricts the speed of vehicles to a specific

speed limit threshold. Knowledge of these limits is useful for estimating the maximum

time threshold during which a vehicle can pass the corresponding roadway.

Traffic management type : traffic delay highly depends on the traffic management type.

For example, it is very likely that an intersection managed by stop signs will experience

longer delays than another managed by traffic lights. However, care should be taken

when considering traffic lights because the delay due to traffic lights depends on the

state of the traffic light upon arrival (i.e. vehicles reaching the intersection while the

traffic light indicates green will most likely experience much less delay than otherwise).

Points of Interest (POI) : Another very effective traffic factor is the existence of points

of interests. These points represents locations that are frequently visited by people,

like banks and grocery stores, and hence represent locations of common interest among

people. Intuitively, the existence of such points along a roadway will very likely increase



the traffic density at that roadway and, consequently, the traffic delay. We note that

information about POI can be extracted from a few specialized maps (like Google maps)

and integrated into the weighting assignment of this phase.

Traffic density and flow : if available, knowledge of vehicular density (number of vehi-

cles per km) and flow (number of vehicles crossing a point per hour) is very useful. Such

information can either be statistically estimated from real traces, or probabilistically in-

ferred based on location and time. For example, a particular area may be increasingly

crowded during a particular period of time of the day, like an intersection leading to

offices which may be crowded only at early morning and late afternoon.

Clearly, obtaining the information above to model ω is extremely difficult, so in section

6, we propose a method to model ω without having to access extra information about

the traffic, that is, we estimate the traffic flow of the concerned roadways by referring

to the original tracking traces (before extracting the target’s trace from it). However,

we also note that beside the explicit modeling of ω, we also implicitly accounted for ω

(at least partially) when we calculated the average driving time in step 1 which already

includes implicit traffic delays.

6 Simulation and Validation

Due to the difficulty of obtaining real vehicular traces to validate our probabilistic trace

reconstruction algorithm, we used a vehicular mobility simulator to generate artificial

vehicular traces for different scenarios. In this simulation, we used VanetMobiSim sim-

ulator [10] to generate vehicular mobility traces based on IDM-LC (IDM with Lane

Changes) mobility model [11] which is an extensions to the IDM (Intelligent Driver

Motion) mobility model [12]. These traces are then fed into NS-2 simulator [13] to

generate the movement of the entities (i.e. vehicles) and a trace database. Arbitrarily

appointing one of the simulated entities as a target, we manually (and randomly) created

gaps in that target’s mobility traces after extracting it from the original trace database.

We then executed our trace reconstruction algorithm to probabilistically choose the

most likely routes to connect those gaps and compare the selected routes with the routes

the target actually took. Since it is difficult to model the delay factor ω without having

access to real traffic traces, we modeled ω by observing the node density on the road-

ways that the gaps’ routes are composed of. In particular, we referred to the original

mobility traces for all the simulated nodes (before extracting the target’s trace) and

looked at traces taken for any node that happen to be passing through any of the road-

ways that are part of the gap’s routes, then estimated the average node density of these

roadways to assign values for their corresponding ω (clearly, the higher the node den-

sity, the larger the value of ω). This is easy to do in practice too since the traces from

which the target trace was extracted usually contain other information about other enti-

ties that we can use to model the delay factors, which then can be used in equations 2

and 3. The delay factor ω is basically a time delay assigned to individual roadway and is

different for different roadways. Figure 2 illustrates our simulation results for scenarios

with different node density over a 1000 m2 area consisting of roadways with differ-

ent lengths –every simulation was run for 100 seconds. In each scenario, we manually



created a gap (with 4 possible routes between the Ingress and the Egress) and run the

algorithm to select the most probable route. The figure shows the probabilities of each

of the four possible routes at the manually created gap in each scenario. The results

shown in figure 2 indicates that our reconstruction algorithm along with our method

of modeling ω by averaging the traffic flow of roadways works very well in scenarios

with lighter node densities where the probabilities of the routes vary drastically and

it is easy to see which route is the most probable, but as node density increases, the

probabilities become closer. Although we argue that this way of modeling ω is, in most

cases, efficient since it gives a good estimation of other traffic delay factors affecting the

roadways without actually having to model them individually, further modeling may be

required in the more cluttered scenarios. However, there are always some routes that

can be easily ruled out (like route 4 in all scenarios) usually because they introduce

much longer delay compared to the time the target trace was missing over a gap.

We believe that if these algorithms were applied to real traces, the results will be

more accurate since most of the simulation-based mobility models (which we used)

don’t always maintain a tightly consistent driving behavior for every entity, so modeling

the driving behavior of the target based on his history trace is slightly less accurate in

this case. In real life scenarios, on the other hand, every driver has a unique driving

behavior, in fact, recent work [14] even showed that the driving behavior of individuals

would make a reasonable biometric measure.

Figure 2. Simulation Results



7 Conclusion

In this paper, we presented an algorithm for the offline reconstruction of vehicular traces

of a target entity from fused RF-visual traces of that entity, but we assume that these

traces exhibit occasional missing data, usually due to lack of surveillance resources. Our

algorithm reconstructs the target’s mobility traces by first identifying the locations of

missing data and treats them as gaps. All the possible routes connecting these gaps are

then identified. Based on a basic Bayesian inference approach and the driving behaviors

of the target (obtained from the available traces), these routes are analyzed and the

most probable one is selected. This process is repeated for all the gaps until the full

(probabilistic) route of the target is reconstructed. We have validated the algorithm using

simulations. Future work will, however, include validation using real vehicular traces,

which allows capturing driving behavior more accurately.
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