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Abstract. Biometric Hash algorithms, also called BioHash,raeénly designed
to ensure template protection to its biometric ralmta. To assure
reproducibility, BioHash algorithms provide a cemtdievel of robustness
against input variability to ensure high reprodoetrates by compensating for
intra-class variation of the biometric raw dataisTéoncept can be a potential
vulnerability. In this paper, we want to reflectchuvulnerability of a specific
Biometric Hash algorithm for handwriting, which wastroduced in [1],
consider and discuss possible attempts to explege flaws. We introduce a
new reconstruction approach, which exploits thisnerability; to generate
artificial raw data out of a reference BioHash. Mated by work from Cappelli
et al. for fingerprint modality in [6] further stiedl in [3], where such an
artificially generated raw data has the propertypadducing false positive
recognitions, although they may not necessarilyisaally similar. Our new
approach for handwriting is based on genetic algm$ combined with user
interaction in using a design vulnerability of tloHash with an attack
corresponding to cipher-text-only attack with siddormation as system
parameters from BioHash. To show the general vglmfitour concept, in first
experiments we evaluate using 60 raw data setsn@viduals overall)
consisting of two different handwritten semantiasb{trary Symbol and fixed
PIN). Experimental results demonstrate that recans#d raw data produces an
EERcconstr.in the range from 30% to 75%, as compared to ti@acked inter-
class EERier-class Of 5% to 10% and handwritten PIN semantic can éieb
reconstructed than the Symbol semantic using #we technique. The security
flaws of the Biometric Hash algorithm are pointedt cand possible
countermeasures are proposed.

Keywords: Biometric Hashing, Online Handwriting, Vulnerabiis,
Reproducibility, Security



1 Introduction and Motivation

A variety of biometric identification and verifigah systems based on fingerprints,
iris, voice etc. were introduced during the lasarge In this paper we discuss the
dynamic biometric modality handwriting. As for dliometric identification and
verification systems, it is crucial to protect thrginal biometric raw data (templates)
in order to prevent all kinds of misuse of indivddand personal data. Identity theft is
only one example, out of many others, that can beedwith eavesdropped
information. However, due to the variability of hietric data, templates cannot
easily be protected by common cryptographic hagbrithms, like they are used in
common password authentication systems compariagagswords in hash domains.
The variability (intra-class variability) has to leken into account to ensure the
reproducibility and protection of the template. Opessible method to ensure
reproducibility and simple template protection @& £xample the Biometric Hash
algorithm for handwriting, originally introduced [@] with further discussions in [2].
The goal of this method is to transform intra-sabjbiometric data, subject to
variability, into stable and individual hash vectalues; an overview is given in
section 2. Although not originally suggested asgiate protection method in [1], we
consider the application of the Biometric Hash sedor template protection; due to
its similar properties as cryptographic hash furni(see section 2).

Motivated by work from [3] and [6] for fingerprimhodality, we investigate the
generation of raw data based on a reference BigHaklth has the property to
produce identical Biometric Hash values as theregfee. Our approach is to exploit
weaknesses from the intra-class-compensation @woeithin the Biometric Hash
generation, which allows different sets of raw dat@roduce an identical Biometric
Hash value as the reference. First experiments umnew approach show the
possibility to reconstruct such valid raw data.

Our proposed method is similar to a ciphertext-aattack on cryptographic
hashes, as described in the literature; see eshoBi[5]. The ciphertext-only-attack
depicts a scenario where an attacker has accessdbiection of hashes and tries to
determine the plaintext out of it. In our case waldvith an adaptive ciphertext-only-
attack where side information such as system pammor the BioHash algorithm is
given. We further discuss our attack on the Bioimédiash algorithm for handwriting
introduced in [1] where the Interval Matrix (IM)peesents the side information in
terms of system parameters of a BioHash algorithm.

The structure of the paper is composed as foll@estion 2 gives an overview to
the BioHash algorithm for handwriting. We discusstegmtial vulnerabilities of the
algorithm and consider possible attack methodsdasehese flaws. In section 3, the
detailed design for the reconstruction of raw datgpresented. The experimental
evaluation is introduced in section 4, results distussion are summarized. Finally,
we present a conclusion, a comparison to the aetiessults for fingerprints in [3]
and our future work based on our findings.



2 Biometric Hash for Handwriting

The motivation to create a Biometric Hash algoritlsrto develop a method which
fulfils a similar task like a cryptographic hashedoHowever, due to the variability of
the input data a slightly different specificatioashto be made. The main differences
and similarities of properties of both Biometric dhaand cryptographic hash are
shown in Table 1. We deno®H as a cryptographic hash functidtl as a Biometric
Hash functiona anda’ as arbitrary digital input data (authenticatioformation),h
as a cryptographic hadhas a BioHash and andP’ indicate two different persons.

Table 1. Brief overview of differences and similarities af/ptographic and biometric hashes

Biometric Hash
The BioHashed andb’ of a Biometric|
Hash functionBH are identical, ifa and
a’ belong to the same persBn
BH(a)=>b, BH(a")=>b’, b=b’, if
aanda’ belongs tcP
It is difficult to find BioHashes andb’
of a Biometric Hash functioBH which
are identical, ifa anda’ belong to twg

Property
a) Reproducibility

Cryptographic Hash

The hashesh and h' of a
cryptographic hash functio@H are
identical, ifa anda’ are identical.
CH(a)=>h, CH(a")=>h’, h=h’, if
a=a’

It is difficult to find hashe$ andh’
of a cryptographic hash functid®@H
which are identical, ila anda’ are

b) Collision
Resistance

not identical. different person® andP’ respectively.
CH(a)=>h, CH(a)=>h’, h#h’, if | BH(a)=>b, BH(@)=>b’, b#b’, if
aza’ P£P’

c) Non-Reversibility | It should be computably hard | tt should be computably hard to calculate

calculate or estimate the input dat:
out of a hashh=>CH(a), within a
realistic time scale.

aor estimate the input data out of a
BioHash b=>BH(a), within a realistig
time scale.

d) Bit Sensitivity

Minor changes withia should have

Changes withina should have no effe

—

a massive effect on=>CH(a). on b=>BH(a), if it derives from the same

personP.

The Biometric Hash generation process differs imgarison to the cryptographic
hash generation by the characteristics (a) Repibititic (b) Collision Resistance
and (d) Bit Sensitivity. In consideration of thederacteristics the BioHash from [1]
and [2] belongs to a class of “Fuzzy commitmentesabs”, where a certain scope of
variability is tolerated to get to the same regultiroduced by Al-saggaf et al. in [7]).

The basic idea behind the BioHash algorithm isxtoaet a set of statistical feature
values from actual handwriting samples and to fadparameterized transform
function for mapping of these values to a stabkhhaalue space. A workflow on the
algorithm for handwriting is shown in Figure 1.

A human handwritten input (e.g. a handwritten sigreg is acquired by a sensor
which transforms pen positions and pressure intareogous electrical signal (in the
following we briefly summarize the main steps fr¢). This signal is converted by
an analog-digital converter into a digital sigaal.e. the digital raw data. Such digital
raw dataa is composed of time-dependent pen positions an@égmonding pressure
and angle values. Within the Biometric Hash gemamgprocess a feature extraction
function determines statistical features basedhenraw datea. Statistical features
define characteristics such a®tal-write-time total-number-of-event-pixelsor
maximum-pressuréor example; a complete list of all actual usedtdiees can be
found in table 2.
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Raw Data Digital Raw Feature | BioHash
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Human biometric
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input using a sensor i Biometric hash function Ref. BloHash ()
(e.g. Tablet) \_ (BH) ,‘

Interval Matrix (/1)

Fig.1 General workflow of biometric bash generation

All determined features are collected in a featueetor of a dimension of,
whereas denotes the number of statistical features besesgl Wuring the extraction
process. With help of an Interval MatrikV), these statistical features are mapped
into a n-dimensional Biometric Hash vector (BioHash). Theetval Matrix is
generated during an enrollment process for eacfecubnd consists of an Interval
Length Vectoral and an Interval Offset Vectae: IM= (4I, Q). Its function is to
compensate intra-class variability of a subjechigpping a certain value range into
one specific value. Each feature possesses a detste of Interval Length and
Interval Offset, therefore the length of Intervabtvix and feature vector are equal.
The mapping for each feature eleméntwithin a feature vectofv into a BioHash
elementh; based on the Interval Matrix (Interval Length \@gcand Offset Vector) is
described in the following Equation 1, whereédgnote the index frorhto n.

blzrvi—QiJ (1)
Al

The result of a Biometric Hash generation procesanin-dimensional Biometric
Hash vectorb (BioHash). In verification mode this BioHad¢his compared to a
reference BioHaslb. The matching can be done, for example, by caicgahe
Hamming distance (amount of equal vector elemdmsieenb andb,.. Reference
BioHashb,; and Interval Matrix (IM) is stored for each userai database.

A more detailed description on the BioHash alganitis given in [1] and a further
discussion in [2]The BioHash cannot only be generated out of petdmradwriting
such as signatures, it is also possible or evenisedvto use pass phrases,
pseudonyms, symbols or Personal Identification Nensi{PIN). These alternative
handwriting samples are called semantics. It has lobserved in [1] that these kinds
of semantics produce similar recognition accurasy campared to handwriting
signatures, without disclosing the true identitytloé writer. General comment: In the
original design of the BioHash neither of the aspeaf irreversibility nor attack
scenarios has been considered. Therefore we adtiesgsaspect in this paper.



Table 2. List of all features used during the BioHash geti@naprocess. Note: our attack
classifies features intob — calculated basic feature, ib — interactive ibagatureand gc —
genetically calculated featureghich are explained in the following sections.

fvii= Parameter Description fvii= Parameter Description

1(ch Total writing time in m 53(gc Numeric Integration of Y values for 3rd «fifth time perioc
2 (ch Total number of event pix¢ 54 (gc Numeric Integration of Y values for 4th «fifth time perioc
3(gc Image Width * 1000 DIV Heigl 55 (gc Numeric ntegration of Y values for 4th c-fifth time perioc

4 (cb Average velocity in xirection in 1000 * pixels / n 56 (gc Average Pen Down Pressure normalized to 1 *

5 (ch Average velocity in yirection in 1000 * pixels / n 57 (gc Average PenUPressure normalized to 1 * 1(

6 (ib) Number of consecutive p-down segmen 58 (gc Baseline Angle of the Sam|

7 (gc. Minimum absolute -velocity during samp 59 (gc Histogram of Y for Zone 1 in % * 1(

8 (gc Maximum absolute-velocity during ample 60 (gc Histogram of Y for Zone 2 in % * 1(

9 (gc Minimum absolute -velocity during samp 61 (gc Histogram of Y for Zone 3 in % * 1(

10 (gc | Maximum absolute-velocity during samp 62 (gc Area(ConvexHull) vs. Area(BoundingBox) * 1C

11 (gc) | Centroid of haizontal pen position in bounding k 63 (gc Area(ConvexHull(Segments)) vs. Area(ConvexHull(SkNg
12 (gc | Centroid of vertical pen position in bounding 64 (gc Area(ConvexHull(Segments)) vs. Area(BoundingBog0(
13 (cc) | Distance of Centroid from oric 65 (gc PathLength(ConvexHull) vs. PathLength(BoundingBokpOC
14 (ib) | Maximum absolute pressure occurred during wri 66 (gc PathLength(ConvexHull(Seg.)) \

15 (gc_| Centroid of lorizontal pen positic 67 (gc PathLength(ConvexHull(Seg.)) vs. PathLength(BougBx)
16 (gc | Centroid of vertical pen positi 68 (gc Histogram of X for left in % * 10

17 (gc | Distance of Centroid from oric 69 (gc Histogram of X for right in % 10C

18 (gc | Horizontal azimuth of centroid from oric 70 (gc Amount of maxima in X directic

19 (b} | Maximum absolute altitude of pen occul 71 (gc Amount of minima in X directio

20 (ib) | Minimum absolute altitude of pen occur 72 (gc Amount ofmaxima in Y directio

21 (ib) | Maximum absolute azimuth of pen occu 73 (gc Amount of minima. in Y directio

22 (ib} | Minimum absolute azimuth of pen occul 74 (gc Ratio of maxima in X direction vs. maxima in Y ditiens

23 (ib} | Average Witing Pressure relative to MaxPresst 75 (gc Ratio of minima X direction vs. minima directic

24 (ib) | Average Azimuth of pen projected on writing pl 76 (gc Amount of crossing points (intersectic

25 (ib) | Average Altitude of pen above the writing pl 77 (gc Amount of intersections with line at 1st quarteX:

26 (gc | Normalized Average velocity in x direction in pis 78 (gc Amount of intersections with line at 2nd quarteX

27 (gc_| Normalized Average velocity in y direction in pis 79 (gc Amount of intersections with line at 3rd quartek

28 (ib) | Absolute cumulated P-up time in m 80 (gc Amount of intersections with line at 4th quartex

29 (gc | Ratio of Pe-ups by total write time * 100 81 (gc Amount of intersections with li at 1st quarter of

30 (gc | Total Number of Sample Valt 82 (gc Amount of intersections with line at 2nd guartely:

31 (gc | Total absolute Path Length in Pix 83 (gc Amount of intersections with line at 3rd quarteiv

32 (gc | Number of pixelin first row, first columi 84 (gc Amount of intersections with diagonal line (upt kef bottom right
33 (gc | Number of pixels in first row, second colu 85 (gc Amount of intersections with diagonal line (up htigo bottom lefi
34 (gc | Number ofpixels in first row, third colun 86 (gc Ratio of distance start/end to path lei

35 (gc | Number of pixels in first row, fourth colur 87 (gc Ratio of distance min(X)/max(X) to path length *a0

36 (gc | Number of pixels in second row, first colu 88 (gc. Ratio of distance min(Y)/max(Y) to path length *00

37 (gc | Number of pixels in second row, second col 89 (gc Ratio of distance ste-centroid to en-centroid * 100

38 (gc_| Number of pixels in second row, third colu 90 (gc Mapping of maima/minima in X to a valt

39 (gc | Number of pixels in second row, fourth colt 91 (gc Mapping of maxima/minima in Y to a va

40 (gc_| Number of pixels in third row, first colur 92 (gc Mapping of maxima/minima in P to a va

41 (gc_| Number of pixis in third row, second colur 93 (gc Mapping of maxima/minima in A to a va

42 (gc_ | Number of pixels in third row, third colur 94 (gc Range of all stroke poir

43 (gc_| Number of pixels in third row, fourth colur 95 (gc Pixels inside radius 1/3’oundingbox to point with lea:

44 (gc | Numeric Integration of normalized X val 96 (gc Pixels inside radius 1/3*Boundingbox to point witlost neighbot
45 (gc_| Numeric Integration of normalized Y val 97 (gc Pixels inside radius 1/3*Bodingbox to point with averac

46 (gc_| Numeric Integration of X values for 1st «fifth tp. 98 (gc Average angle of all crc-point-angles betweer-30¢

47 (gc_| Numeric Integration of X values for 2nd «fifth tp. 99 (gc Average angle of ¢ cros-point-angles between -60¢

48 (gc_| Numeric Integration of X values for 3rd «fifth tp. 100 (gc | Average angle of all cre-point-angles between -90¢

49 (gc_| Numeric Integration of X values for 4th «fifth tp. 101 (gc | Angle count of all crss-point-angles betweer-30¢

50 (gc | Numeric Integration of X values for 4th «fifth tp. 102 (gc | Angle count of all cro-point-angles between -60¢

51 (gc | Numeric Integration of Y values for 1st «fifth tp. 103 (gc | Angle count of all cro-poirt-angles between -90¢

52 (gc | Numeric Integration of Y values for 2nd «fifth tp.

2.1 Potential Design Vulnerabilities of the BioHash for Handwriting

Our idea is to consider the Biometric Hash schemeaamethod for template
protection and to analyze the vulnerabilities fue teconstruction of raw data. We do
so based on the assumption that an attacker haproomnsed a biometric based
verification system and has access and knowledgeséoname, reference BioHash
bres @and Interval Matrix I(M) for each registered individual. The operatinghpiple

of the BioHash algorithm is published and is acitésdgor everyone who is interested
in (Kerkhoff principles).



The first thing that attracts our attention is théerval Matrix and the mapping
function, which maps the feature vector into a Bish. When BioHaslbge and
corresponding Interval Matri¥M are given, we can perform a reverse mapping to
create a feature vectdv.,.. If we convert Equation 1 according fig, we calculate
the lower limit of a value range which can be mapteh;. By adding the half ofir,
to it, we compute the middle of the value rangee (B&gure 2) in feature space.
Equation 2 formulates this approach, wheréhys replaced withv,,; because they
are not necessarily equal, related to the rounidimgjuation 1.

Al 2

=b, A, +Q, +
2

ref;

fv,

calg

Figure 2 gives a visual point of view on the reeensapping done in Equation 2.
Using this method, it is possible to calculate mplete feature vectdw.,. Due to
the fact thatfv.,. is determined fronbge and correspondingM, it can be mapped
with help ofIM to bresagain and therefore be used to reconstruct raa; tased on
it.

b

refj

i fvcalc,

Fig. 2 Example of backward calculation (reverse mappofga feature vector elemefit,;
based on the corresponding reference BioHash Interval Length4l and Interval Offsef;.

If an attacker takes advantage of this vulnerabi¢verse mapping) he can reduce
his work on reconstructing raw data based on taktutated feature vectdv.,, i.e.
in feature space rather than on the BioHash. The section shows a possible
method to achieve this.

2.2 Attack considerations

By analyzing the feature vector and it's consistatgtistical feature it turns out that
some features can be used to build a basic stauttureconstruct raw data. For that
reason it is necessary to calculate or determimeesttindamental data. The idea is
now to find fundamental data that helps to form Ilasic structure by looking into
total-write-timeg total-number-of-event-pixels maximum-value-in-x-directionand
maximum-value-in-y-directionThe first two values can easily be determined by
reading the corresponding values out of the feataotorfv,y.. Maximum value irnx
andy direction can be calculated out of the featuwal-write-time and average-
velocity-in-x-direction respectively average-velocity-in-y-direction These four



mentioned features, which we refer tocatculated basic featureform the basic raw
data structure (see Table 2 marked with

Based on this basic structure it is now possiblan@anually implement other
features as well. This can be done as follows:xque®enced user chooses a specific
featurefv; he wants to implement froffe.,, he changes the basic raw data structure
corresponding to that featufe then he determines a temporary feature vewigs,
for this new set of raw data and compares feafturrom fviem, with featurefy; of
feature vectofve. If they are not the same, he changes the basicata structure
again, until they match. This procedure is timestoning and needs a lot of
experience in interpreting and manipulating rawadat a way to fulfill a certain
feature. However, by determining these featuresualiyn we expect that it leads to
more natural results within the artificial raw dafa perform a first test to determine
the success tendency of this approach under ctadrabnditions, we introduce a
time limit for this interactive process in our exipeents as described in section 4.1.

Initial considerations about which features can da¢ manually revealed that
pressure and angle based features are our firsteshoThat is because they are
independent from horizontal and vertical (x/y cooates) based features, which
make up more thaB0% of all features used and described in [1]. Oneepiessure
and angle based features are implemented insidethelata they can be locked, so
that they cannot be changed anymore in the furtbesnstruction process. We call
these pressure based, angle based and all otherefeahat can be implemented
manually within a raw data structuigteractive basic featureee Table 2 marked
with ib). All calculatedandinteractive basic featureare additional summarized in
Table 3.

Table 3. Classification of features based on the featutédi$able 2

Feature class Description Dedicated features
Calculated Basic Features that form the basis for a raw ddta, = {fvy, fv, fu, fus}
Featuregfvcy) structure by calculating and determine

fundamental data
Interactive Basic Features that are implemented into the bpBig = {fve, fvia, fvig, oo, Wy,
Featuregfviy) raw data structure manually Voo, Vs, TVos, T\os, T\og}
Genetically Calculated | All features that are implemented into rawge = fvay \ fuep \ fvip
Featuregfvg) data by a genetic algorithm.
Overall featuregfva) All features used during the BioHasfvy ={fvy, ..., o3
determination process

Obviously, if calculatedandinteractive basic featureare implemented into a set
of raw data then all the remaining features haveetimplemented as well to generate
a feature vector that matchésg,. This can be done in many different ways (e.qg.
brute-force attack). Our first idea is to implemé#ém remaining features into the raw
data by using a genetic algorithm, first preseftgdiolland in 1975 [4]. We define
features which are calculated this waygenetically calculated featurgsee also
marked in Table 2 and listed in Table 3).

In the next subsection we focus on the descriptioaur reconstruction approach
based on the mentioned attack consideration bynimggenetic algorithms.



3 Design Approach for Reconstruction

In this section we give a detailed description am first design approach for
reconstructing raw data out of a given BioHash eadesponding Interval Matrix,
based on the vulnerability and feature classiftegtdiscussed in section 2.

Our approach can be divided into four major st@pe first step is to calculate the
feature vectofv.,. as described in section 2.1. During the next stepbuild a basic
raw data structure based on ttedculated basic featuress introduced in section 2.2.
The third step implies the implementationioteractive basic featuresito the basic
raw data structure as presented in section 2.all#irour last and fourth step is to
determine all remaining features based on the rata dtructure, by using a genetic
algorithm, which is detailed later on in this senti These four steps build our new

design approach for reconstructing raw data andiepected in Figure 3.

Calculated Caloulsied &
Feature Basic Raw aloulater
Wector Data Inferactive Reconstructed

) ) Raw Da
Feature Frpie Basic Raw | Siwciue | Interactive | Fowbala | ool e awoEa s

Vector Data ‘:’> Feature :> Algorithm |::>
Generation

Interval Matrix (#)

BioHash b,

Calculation Construction

Step 1 Step 2 Step 3 Step 4

Fig. 3 lllustration of our new approach to reconstruol rdata out of BioHaslb and
corresponding Interval Matrix1)

Step 1: With help of given BioHash and corresponding InémMatrix (M) we
calculate the feature vecttw,, based on equation 2. As already mentioned in@®cti
2.1, fve4c is not necessarily, or even likely to be equalh® original feature vector,
but leads to the same BioHabR;, when mapped with the corresponding Interval
Matrix. The feature vectoffv.,. forms the basis for our reconstruction process
described in steps 2 to 4.

Step 2: Based onfv,. we build a basic raw data structure using ¢a&ulated
basic featuresThis helps to implement additional features siacbasic raw data
structure is now given and has only to be modified.

Step 3: A user tries to implement allhteractive basic featuresito the basic raw
data structure, in a defined limited period of titeehave a first evaluation with
controlled time constrains. Depending on the exypee of a user and constellation of
fvearc it is possible that not alhteractive basic featuresan be implemented due to
this time constant.

Step 4: All remaining featuresvy are transcribed into the raw data structure by a
genetic algorithm (GA), which is described as fao A start population is
composed of individuals, which are randomly gereztatin order to generate
individuals that represent a realistic signatuheythave to be build of continuous
horizontal and vertical signal components. Motiday Galbally et al. in [8], where
synthetic signatures are generated based on dp@caigsis; we created an algorithm
which generates different, almost realistic sigreguDue to the fact that we already
generated pressure and angle values (implementbdivwicalculatedandinteractive
basic features only horizontal and vertical raw data valuesdse® be added. All



individuals now possess an implementation of threeshasic features and randomly
generated continuous horizontal and vertical sgn@he fitness function for each
individual is based on the method “survival of fiteest”. To determine the fittest
individuals, a BioHash is calculated for each indiial (based on given Interval
Matrix) and compared, using the normalized Hammiligfance, to the reference
BioHashb,e. Obviously, in our case, the normalized Hammirgiatice between any
2 BioHash vectors is defined by the number of nguaé vector components divided
by the vector's dimension. Individuals which acldekie highest scores are defined as
the fittest. Only the fittest are taken into thexmeound combined with a defined
survival rate. We utilize the BioHash Hamming digta as fitness function, since this
is calculated based on the original feature vestalues, whereadv.,. is just
estimation. We use the genetic operators’ mutatiad crossover to create new
generations and modify raw data in such a way tthetefore mentionedalculated
and interactive basic featureare preserved. Mutations are not always applied to
individuals during the generation creation; itamdomly controlled using a mutation
rate. The mutation operator changes only a paanohdividual when it occurs. We
only use ane-point-crossovegenetic operator during a creation of a new gditgra

It swaps sub-sections of two individuals, wherelisyse sub-sections are at the same
position within the two individuals. The genetigatithm terminates if one of the
following conditions is reached: (1) returned BisHaand reference BioHash are
equal (or a specific threshold is reached), (2jviddals do not change any more in a
positive way (higher matching scores) after mudtigleneration cycles or (3) a
specific defined amount of generation cycles hanlmassed (e.g. x=100 iterations).
An overview on the GA workflow is shown in Figure 3

New Start
Individuals + Population
corresponding
BioHash

—— P Selection L) Fittest Individual(s)

after x iterations

New
Generation

Genetic
Operators
(mutation/
Crossover)

BioHash
Generation

Start
Population

Interval Matrix (IM) BioHash (b,.)

ref

Fig. 3 Basic workflow of the used genetic algorithm duriagr data reconstruction

After all four steps are performed; one or more data sets were reconstructed,
depending on the GA result (two or more individuatshieve the highest fitness
score). In order to evaluate our new design approae perform experiments, as
described in the next section.

4 Experimental Evaluation

In this chapter we summarize our first experimetuds evaluate the proposed
reconstruction attack. Our goal is to see how sigfoly we can generate artificial
biometric handwriting raw data on given Intervaltkitaand corresponding BioHash
by measuring the archived FAR sy With the reconstructed raw data. First we define
the experimental settings. Secondly we introduce methodology to provide a



comparative study of the achieved results to theeg® verification performance.
Thirdly, results are presented and discussed.

4.1 Overall settings

The biometric database of our initial tests coss@t5 subjects, which each have
donated6 handwriting samples for two different semanticiN(Rnd Symbol). The
given PIN is a sequence of the five digit8993.Using this semantic, the individual
kind of writing plays a more important role tharm ttontent to recognize a person as
its self or distinguish him/her from other userheTreely chosen Symbol is based on
individual creative characteristics and provideknowledge based component in
form of the sketched object (e.g. order of singtekes to create the symbol). In order
to create the reference data, an Interval Matrik@neference BioHash are calculated
for each person using the first five handwritinghpées. The remaining sixth sample
is applied for verification.

In the next paragraphs we provide details abouts#itings for our experiments
during the reconstruction process for step 3 arld dtep 1 and 2 no parameter needs
to be set. The dimension of Interval Matrix is 281dhd thus the size of the BioHash
vector 103; therefore 103 features are used duhi@ddioHash determination and raw
data reconstruction in our tests.

During the third step (setting interactive featuirethe reconstruction process, in
our first test one human attacker and forger triegnplement thenteractive basic
featuresinto a basic raw data structure, for this procedwe define a maximum
processing time af0 minutes.

Within step four of the reconstruction process, gedtings for the genetic
algorithm is as follows: start population 00 individuals, 90% survival rate, the
recombination rate and mutation ratel®% (10% of all individuals are recombined
or mutated). The genetic algorithm terminates if180% matching rate is
accomplished or the matching score does not changenore in a positive way after
two full cycles (all features). The matching to efetine the fittest individual is
accomplished by calculating the Hamming distancelescribed in section 3. The
fittest individual represents the reconstructed data and is used during verification
together with genuine raw data. In Table 4 arsetings summarized.

Table 4. Overview of all overall settings

General Settings Step 3: Interactive feature géioara
Number ofbs 10 (5 per semantic | Forger: One computer science student (age: 26)
per user: class PIN/Symbol) as interactive attacker
SizeOfbyer: 103 Forgery time: <10 min
SizeOffvg: 4 features Step 4: Genetic Algorithm
SizeOffviy,: 10 Start population 100 individuals
SizeOffvge: 89 Survival rate 90%
SizeOffva: 103 Recombination rate 10%
Mutation rate 10%
Termination criteria. 100% match or no improvement pof
fitness function after 2 generations




4.2 Evaluation M ethodology and M easurements

In order to compare the performance of a verifaatising the reconstructed raw data
with the verification using genuine raw data, bidmeeerror rates FRR/FAR and EER
are calculated.

The FRR (false rejection rate) describes the raibween the number of false
rejections of authentic persons and the total nundbetests. Generally, the FAR
(false acceptance rate) is the ratio between nurobdalse acceptances of non-
authentic persons and the entire number of auttaidh attempts. In our evaluation,
we perform two kinds of false acceptance teststlfir interclass FAR (FARer-cias3
errors are calculated by comparing BioHash valdealsubjects against each other
and analyzing false acceptances against normakimdming distance thresholds.
Secondly, we determined false acceptances geneogtélie reconstructed raw data
against the same threshold, in the following deshai® FAR:constr

For a comparative analysis of verification perfonce, the EER (equal error rate)
is a common measurement in biometrics. EER dendlbes point in error
characteristics, where FRR and FAR yield identigdlie. In the further discussion of
our experimental results, we analyze error ratgrdias, which consists of error rates
graphs for FARer.class FAReconstn @and FRR for each writing semantics to illustrate
EERnter—classrespeCtiveIy EEBconstr-.

4.3 Results and Discussion

The results of our test with different semanticssks are displayed in Figure 4. In
average the reconstructed raw data produces an.&ERof 75% for the semantic
PIN, whereas the original user based raw data lead® EER.cassOf Only 10%
(Figure 4) for inter-class verification. This meatisat random forgeries (interclass
tests) cause lower false acceptance than our azhre@constructed raw data.

Error Error
Rates Rates
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Fig. 4 FRR, FARter-class@Nd FAReconstr for PIN (left) and Symbol (right)

For semantic classymbolthe reconstructed raw data leads to an EER; of 30%
and an interclass EER,..ass0f approximately5% (see Figure 4 right). It shows that
the semantic clasSymbolis more resistant to our attack based on recartstiuraw
data then the semantic claB$N. The results reflect the first attempt to generate
biometric raw data corresponding to a given Inteiviatrix and corresponding
reference BioHash. Please note that this is onlfirg attempt of producing



reconstructed raw data and can just point intoraction because of the relatively
limited amount of semantics and users during tlsé tdowever, these results show
that in our case the reconstructed raw data creasemificantly higher FAR then the
original user based raw data, which allows attackemreproduce BioHash values in
75% of all trails.

6 Conclusion and Future work

In this paper we have suggested a method for recmting biometric raw data from
given BioHash values, by using features derivednfugser interaction and genetic
algorithm for approximation. Our work reveals sowmunerabilities of the Biometric
Hash algorithm for handwriting, introduced in [Based on these vulnerabilities and
motivated by earlier work e.g. for generating & forgeries [6], it is possible to
design and implement an attack to generate raw Hated oncalculated and
interactive basic featurdetermination, with an additional genetic algarittOur first
experiment shows that such generated forgeriesupeodn EER.,ns.in the range of
30% to75% as compared to non-attack inter-class FERass0f 5% to 10% If we
compare our results with the one made in [3] byb@ldy} et al., where a fake fingertip
was created from an image reconstructed from a tamutemplate, we recognize
similarities. The test set is in comparison to 5mByls and 5 PINs limited to 10
different fingerprints. They are using an attacler present the evaluation results,
instead of an EER, because the FAR for all 5 cameil thresholds a@%. By using
the same measurement methodology we achieve siraaits. The success-attack-
rate in [3] is higher 30%-100% compared to our attack rate8%-70%9 as we
expected, due to the fact that fingerprint basedgrition systems are more accurate
in distinguishing different fingerprint samples.

In order to eliminate the vulnerability to the Biash algorithm we suggest to not
use calculated basic featureduring the BioHash generation process. It is more
difficult to reconstruct raw data using our new @ggeh if calculated basic features
are nonexistent or derive to complex additionallfess.

In our future work we will run tests with more settia classes and users to extend
our first results. We also plan to examine all fieas being used during the BioHash
generation to find more that can be usedcta@sulated basic featuresr interactive
basic features The development of a more advanced genetic #fgoriis also
planned in the future. Another consideration is tievelopment of an automatic
approach, which makes an interactive interferermazlless.
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