Probabilistic Fault Diagnosis in the MAGNETO Autonomic Control Loop

Abstract : Management of outer edge domains is a big challenge for service providers due to the diversity, heterogeneity and large amount of such networks, together with limited visibility on their status. This paper focuses on the probabilistic fault diagnosis functionality developed in the MAGNETO project, which enables finding the most probable cause of service problems and thus triggering appropriate repair actions. Moreover, its self-learning capabilities allow continuously enhancing the accuracy of the diagnostic process.
Type de document :
Communication dans un congrès
Burkhard Stiller; Filip Turck. 4th International Conference on Autonomous Infrastructure, Management and Security (AIMS), Jun 2010, Zurich, Switzerland. Springer, Lecture Notes in Computer Science, LNCS-6155, pp.102-105, 2010, Mechanisms for Autonomous Management of Networks and Services. 〈10.1007/978-3-642-13986-4_14〉
Liste complète des métadonnées

Littérature citée [8 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01056642
Contributeur : Hal Ifip <>
Soumis le : mercredi 20 août 2014 - 12:13:47
Dernière modification le : vendredi 11 août 2017 - 16:20:33
Document(s) archivé(s) le : jeudi 27 novembre 2014 - 11:44:19

Fichier

61550103.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Pablo Arozarena, Raquel Toribio, Jesse Kielthy, Kevin Quinn, Martin Zach. Probabilistic Fault Diagnosis in the MAGNETO Autonomic Control Loop. Burkhard Stiller; Filip Turck. 4th International Conference on Autonomous Infrastructure, Management and Security (AIMS), Jun 2010, Zurich, Switzerland. Springer, Lecture Notes in Computer Science, LNCS-6155, pp.102-105, 2010, Mechanisms for Autonomous Management of Networks and Services. 〈10.1007/978-3-642-13986-4_14〉. 〈hal-01056642〉

Partager

Métriques

Consultations de la notice

70

Téléchargements de fichiers

112