Understanding Privacy Risk of Publishing Decision Trees

Abstract : Publishing decision trees can provide enormous benefits to the society. Meanwhile, it is widely believed that publishing decision trees can pose a potential risk to privacy. However, there is not much investigation on the privacy consequence of publishing decision trees. To understand this problem, we need to quantitatively measure privacy risk. Based on the well-established maximum entropy theory, we have developed a systematic method to quantify privacy risks when decision trees are published. Our method converts the knowledge embedded in decision trees into equations and inequalities (called constraints), and then uses nonlinear programming tool to conduct maximum entropy estimate. The estimate results are then used to quantify privacy. We have conducted experiments to evaluate the effectiveness and performance of our method.
Type de document :
Communication dans un congrès
Sara Foresti; Sushil Jajodia. 24th Annual IFIP WG 11.3 Working Conference on Data and Applications Security and Privacy (DBSEC), Jun 2010, Rome, Italy. Springer, Lecture Notes in Computer Science, LNCS-6166, pp.33-48, 2010, Data and Applications Security and Privacy XXIV. 〈10.1007/978-3-642-13739-6_3〉
Liste complète des métadonnées

Littérature citée [26 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01056670
Contributeur : Hal Ifip <>
Soumis le : mercredi 20 août 2014 - 13:37:52
Dernière modification le : vendredi 11 août 2017 - 17:32:39
Document(s) archivé(s) le : jeudi 27 novembre 2014 - 11:49:18

Fichier

_11.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Zutao Zhu, Wenliang Du. Understanding Privacy Risk of Publishing Decision Trees. Sara Foresti; Sushil Jajodia. 24th Annual IFIP WG 11.3 Working Conference on Data and Applications Security and Privacy (DBSEC), Jun 2010, Rome, Italy. Springer, Lecture Notes in Computer Science, LNCS-6166, pp.33-48, 2010, Data and Applications Security and Privacy XXIV. 〈10.1007/978-3-642-13739-6_3〉. 〈hal-01056670〉

Partager

Métriques

Consultations de la notice

93

Téléchargements de fichiers

74