J. L. Stein, X. Hua, S. Lee, A. J. Ho, A. D. Leow et al., Voxelwise genome-wide association study (vGWAS), NeuroImage, vol.53, issue.3, pp.1160-1174, 2010.
DOI : 10.1016/j.neuroimage.2010.02.032

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2900429

X. Gao, L. C. Becker, D. M. Becker, J. D. Starmer, and M. A. Province, Avoiding the high Bonferroni penalty in genome-wide association studies, Genetic Epidemiology, vol.165, pp.100-105, 2010.
DOI : 10.1002/gepi.20430

D. Mota, B. Frouin, V. Duchesnay, E. Laguitton, S. Varoquaux et al., A fast computational framework for genome-wide association studies with neuroimaging data, 20th International Conference on Computational Statistics, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00720265

D. P. Hibar, J. L. Stein, O. Kohannim, N. Jahanshad, A. J. Saykin et al., Voxelwise gene-wide association study (vGeneWAS): Multivariate gene-based association testing in 731 elderly subjects, NeuroImage, vol.56, issue.4, pp.1875-1891, 2011.
DOI : 10.1016/j.neuroimage.2011.03.077

T. Ge, J. Feng, D. P. Hibar, P. M. Thompson, N. et al., Increasing power for voxel-wise genome-wide association studies: The random field theory, least square kernel machines and fast permutation procedures, NeuroImage, vol.63, issue.2, pp.858-873, 2012.
DOI : 10.1016/j.neuroimage.2012.07.012

M. Vounou, T. E. Nichols, G. Montana, and A. D. Initiative, Discovering genetic associations with high-dimensional neuroimaging phenotypes: A sparse reduced-rank regression approach, NeuroImage, vol.53, issue.3, pp.1147-1159, 2010.
DOI : 10.1016/j.neuroimage.2010.07.002

F. Bunea, Y. She, H. Ombao, A. Gongvatana, K. Devlin et al., Penalized least squares regression methods and applications to neuroimaging, NeuroImage, vol.55, issue.4, pp.1519-1527, 2011.
DOI : 10.1016/j.neuroimage.2010.12.028

O. Kohannim, D. P. Hibar, J. L. Stein, N. Jahanshad, C. R. et al., Boosting power to detect genetic associations in imaging using multi-locus, genome-wide scans and ridge regression. Biomedical Imaging: From Nano to Macro, IEEE International Symposium on, pp.1855-1859, 2011.

N. Meinshausen and P. Bühlmann, Stability selection, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.7, issue.4, pp.417-473, 2010.
DOI : 10.1111/j.1467-9868.2010.00740.x

E. L. Floch, V. Guillemot, V. Frouin, P. Pinel, C. Lalanne et al., Significant correlation between a set of genetic polymorphisms and a functional brain network revealed by feature selection and sparse Partial Least Squares, NeuroImage, vol.63, issue.1, pp.11-24, 2012.
DOI : 10.1016/j.neuroimage.2012.06.061

URL : https://hal.archives-ouvertes.fr/hal-00750902

L. M. Vaquero, L. Rodero-merino, J. Caceres, and M. Lindner, A break in the clouds, ACM SIGCOMM Computer Communication Review, vol.39, issue.1, pp.50-55, 2008.
DOI : 10.1145/1496091.1496100

G. Juve, E. Deelman, G. B. Berriman, B. P. Berman, and P. Maechling, An Evaluation of the Cost and Performance of Scientific Workflows on Amazon EC2, Journal of Grid Computing, vol.3, issue.3???4, pp.5-21, 2012.
DOI : 10.1007/s10723-012-9207-6

K. R. Jackson, L. Ramakrishnan, K. J. Runge, T. , and R. C. , Seeking supernovae in the clouds, Proceedings of the 19th ACM International Symposium on High Performance Distributed Computing, HPDC '10, pp.421-429, 2010.
DOI : 10.1145/1851476.1851538

H. Hiden, S. Woodman, P. Watson, C. , and J. , Developing cloud applications using the e-Science Central platform, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.19, issue.1983, 2012.
DOI : 10.1098/rsta.2012.0085

C. Chu, S. K. Kim, Y. Lin, Y. Yu, G. R. Bradski et al., Map-reduce for machine learning on multicore, NIPS, pp.281-288, 2006.

J. Dean and S. Ghemawat, MapReduce, Communications of the ACM, vol.51, issue.1, pp.107-113, 2008.
DOI : 10.1145/1327452.1327492

A. Costan, R. Tudoran, G. Antoniu, and G. Brasche, TomusBlobs: scalable data-intensive processing on Azure clouds, Concurrency and Computation: Practice and Experience, vol.29, issue.4, 2013.
DOI : 10.1002/cpe.3034

URL : https://hal.archives-ouvertes.fr/hal-00767034

J. Yang, T. A. Manolio, L. R. Pasquale, E. Boerwinkle, N. Caporaso et al., Genome partitioning of genetic variation for complex traits using common SNPs, Nature Genetics, vol.37, issue.6, pp.519-525, 2011.
DOI : 10.1038/ng.548

S. H. Lee, N. R. Wray, M. E. Goddard, and P. M. Visscher, Estimating Missing Heritability for Disease from Genome-wide Association Studies, The American Journal of Human Genetics, vol.88, issue.3, pp.294-305, 2011.
DOI : 10.1016/j.ajhg.2011.02.002

C. Lippert, J. Listgarten, Y. Liu, C. M. Kadie, R. I. Davidson et al., FaST linear mixed models for genome-wide association studies, Nature Methods, vol.447, issue.10, pp.833-835, 2011.
DOI : 10.1186/1471-2156-6-S1-S2

J. Yang, B. Benyamin, B. P. Mcevoy, S. Gordon, A. K. Henders et al., Common SNPs explain a large proportion of the heritability for human height, Nature Genetics, vol.31, issue.7, pp.565-569, 2010.
DOI : 10.1038/ng.608

S. H. Lee, T. R. Decandia, S. Ripke, and J. Yang, Estimating the proportion of variation in susceptibility to schizophrenia captured by common SNPs, Nature Genetics, vol.460, issue.3, pp.247-250, 2012.
DOI : 10.2307/2289471

J. Yang, S. H. Lee, M. E. Goddard, and P. M. Visscher, GCTA: A Tool for Genome-wide Complex Trait Analysis, The American Journal of Human Genetics, vol.88, issue.1, pp.76-82, 2011.
DOI : 10.1016/j.ajhg.2010.11.011

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion et al., Scikit-learn: Machine learning in Python, Journal of Machine Learning Research, vol.12, pp.2825-2830, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650905

M. J. Anderson and J. Robinson, Permutation Tests for Linear Models, Australian <html_ent glyph="@amp;" ascii="&"/> New Zealand Journal of Statistics, vol.43, issue.1, pp.75-88, 2001.
DOI : 10.1111/1467-842X.00156

D. Ghoshal, R. S. Canon, and L. And-ramakrishnan, I/o performance of virtualized cloud environments Proceedings of the second international workshop on Data intensive computing in the clouds, DataCloud-SC '11, pp.71-80, 2011.

Y. Simmhan, C. Van-ingen, G. Subramanian, L. , and J. , Bridging the Gap between Desktop and the Cloud for eScience Applications, 2010 IEEE 3rd International Conference on Cloud Computing, pp.474-481, 2010.
DOI : 10.1109/CLOUD.2010.72

R. Tudoran, A. Costan, and G. Antoniu, MapIterativeReduce, Proceedings of third international workshop on MapReduce and its Applications Date, MapReduce '12, pp.9-16
DOI : 10.1145/2287016.2287019

URL : https://hal.archives-ouvertes.fr/hal-00684814

P. H. Westfall and S. S. Young, Resampling-based multiple testing : examples and methods for P-value adjustment, 1993.

G. Schumann, E. Loth, T. Banaschewski, A. Barbot, G. Barker et al., The IMAGEN study: reinforcement-related behaviour in normal brain function and psychopathology, Molecular Psychiatry, vol.47, issue.12, pp.1128-1139, 2010.
DOI : 10.1016/j.brainres.2006.03.029

G. D. Logan, On the ability to inhibit thought and action: A theory of an act of control., Psychological Review, vol.91, issue.3, pp.295-327, 1994.
DOI : 10.1037/0033-295X.91.3.295

B. Thyreau, Y. Schwartz, B. Thirion, V. Frouin, E. Loth et al., Very large fMRI study using the IMAGEN database: Sensitivity???specificity and population effect modeling in relation to the underlying anatomy, NeuroImage, vol.61, issue.1, pp.295-303, 2012.
DOI : 10.1016/j.neuroimage.2012.02.083

W. S. Kremen, E. Prom-wormley, M. S. Panizzon, L. T. Eyler, B. Fischl et al., Genetic and environmental influences on the size of specific brain regions in midlife: The VETSA MRI study, NeuroImage, vol.49, issue.2, pp.1213-1223, 2010.
DOI : 10.1016/j.neuroimage.2009.09.043

I. L. Van-soelen, R. M. Brouwer, J. S. Peper, M. Van-leeuwen, M. M. Koenis et al., Brain SCALE: Brain Structure and Cognition: an Adolescent Longitudinal Twin Study into the Genetic Etiology of Individual Differences, Twin Research and Human Genetics, vol.14, issue.03, pp.453-467, 2012.
DOI : 10.1016/j.euroneuro.2010.03.008

A. Den-braber, M. M. Bohlken, R. M. Brouwer, D. Van-'t-ent, R. Kanai et al., Heritability of subcortical brain measures: A perspective for future genome-wide association studies, NeuroImage, vol.83, 2013.
DOI : 10.1016/j.neuroimage.2013.06.027