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Abstract. Optimizing transportation sequence is crucial to reduce ma-
terial handling costs in warehouse operations and thus in total logistic
costs. Transportation sequence is the ordering of storage and retrieval
jobs that a material handling device has to perform to finish an order
list. In many studies, the optimization of transportation sequence has
been simplified as an order-picking problem, and accordingly solved as a
classical traveling salesman problem. However, transportation sequence
is a double-cycle storage and retrieval problem (DCSRP) in itself, mean-
ing that the combination of storage and retrieval jobs into double cycles
has to be considered simultaneously. In this paper, we propose formulat-
ing the DCSRP as a permutation problem and applying several genetic
algorithms to solve the formulated problem. Extensive computational ex-
periments were performed to demonstrate the capability of the approach.
The experimental analysis confirms that our approach could solve the
problem efficiently on the one hand, and addresses the question of which
genetic operators are best applied to the formulated DCSRP on the
other hand.
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1 Introduction

Typical functions of a warehouse include receiving, storage, order picking, and
shipping. In [3], the authors provided a comprehensive review of research on
warehouse operation, in which various decision support models and solution
algorithms for each of the functions were discussed. One of the repeated activities
that absorbs significant costs in total warehouse operational costs is material
handling. This activity comprises order picking, loading and unloading goods,
and transporting to another location for unloading and loading, etc.

These material handling activities are unavoidable since Stock Keeping Units
(SKUs) are stored in different locations in a warehouse while orders may come
from various customers and/or departments. Transportation costs, both exter-
nal and in-house transportation, contribute as the highest cost of total logistic
costs (> 40%). To reduce these costs, it is required to reduce traveling distance
(and also traveling time) of transporters—which are forklift trucks in our work.
In warehouses, a single transport order is described as a movement of one stor-
age unit from one location (source) to another location (sink). Such orders are
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transferred to the subordinate control of a forklift operating in a warehouse aisle.
Thereby the warehouse management system (WMS) can control the sequence
(i.e. ordering) of operations to be performed by a forklift in an aisle. In each
aisle, loads (e.g. pallets) to be stored and retrieved by the forklift are buffered
in the warehouse pre-storage zone [4].

A straightforward method to optimize transportation sequence in an aisle is
to combine simultaneous storage and retrieval jobs into multiple cycles. Fig. 1
illustrates the comparison between single- and double-cycle operation modes.
There are two transport orders in this illustration. The order 1 is a storage job
and the order 2 is a retrieval job. By combining two orders into double cycle
operation shown in Fig. 1b, the total traveling distance to complete two orders
is 16 length units in comparison with the single-cycle case in Fig. 1a with a total
of 26 length units.

Fig. 1. Single vs double cycle operation mode.

The DCSRP is one of the sequencing problems that occurs in many fields
of material flow. Another problem with similar characteristics is the well-known
order-picking problem [1, 2]. The objective of these problems is to find an opti-
mal sequence of transportation (or order-picking) that yields the minimal total
traveling distance of the material handling transporter (or picker). Such kind
of sequencing problems can be considered as the traveling salesman problem
(TSP), which is among the most popular NP-hard combinatorial problems [6].
In fact, several existing investigations into these sequencing problems have been
formulated via the TSP [7, 11].

Specifically in warehouse operations, a large portion of research has been
performed to tackle the order-picking problem. For example, in [11], the authors
use TSP heuristic algorithms to address the sequencing problems of order pick-
ers in conventional multi-parallel-aisle warehouse systems. Another example is
the use of TSP-based k-interchange method for solving the problem of routing
order pickers in single-block warehouses [7]. Meanwhile, the issue of double-cycle
transportation in warehouses has not been considered rigorously in the opera-
tions research literature. Motivated by previous research on using TSP heuristics
for solving the order-picking problem, in this paper, we discuss the optimization
of transportation sequence in warehouses by solving the double-cycle storage and
retrieval problem. To be more specific, we aim to find an optimal combination



Optimizing Transportation Sequence by GAs 3

of all double cycles that the forklift has to follow to finish an order list with
minimal traveling distance.

One of the benefits of transferring the order-picking problem into the TSP
is the existence of various solution approaches for this problem. Recent develop-
ment in metaheuristics, including the hybridization of evolutionary algorithms
with heuristics as a local search strategy, have provided promising solution ap-
proaches to the TSP. Among evolutionary algorithms, genetic algorithms are the
most popular technique and have certain success in solving NP-hard problems,
including the TSP [5]. In this paper, we formulate the DCSRP as a permutation
problem and employ different genetic algorithms to solve the resulting problem.

The remainder of this paper is organized as follows. In Sect. 2, the double-
cycle storage and retrieval problem in a multi-parallel-aisle warehouse system
is described and then formulated as permutation problem. Next, in Sect. 3,
we present an approach to solving the formulated problem using genetic algo-
rithms (GAs) and review different genetic operators to be used. Then, in order
to evaluate the effectiveness of GAs to our problem, extensive computational
experiments were implemented and the results are analyzed in Sect. 4. Finally,
some conclusions and possible extensions for future research are discussed.

2 Problem Description and Formulation

2.1 Problem Description

A conventional multi-parallel-aisle warehouse system is shown in Fig. 2. This
warehouse consists of r racks and l aisles. In this paper, we consider a warehouse
containing only full-sized pallets, which are stored on the racks and in both
sides of the aisles. In this figure, those pallets that need to be stored are denoted
by filled rectangles and those that need to be retrieved are denoted by crossed
rectangles. Buffer zone is the location where pallets are released and also where
a forklift picks the pallets that need to be stored in warehouse.

Fig. 2. Multi-parallel-aisle warehouse system.
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A double cycle is executed as follows. First, the forklift starts from the buffer
zone (B), loads a pallet, moves to the designated storage location (S), and stores
the pallet. Then, it approaches the pallet to be retrieved at the retrieval location
(R), picks this pallet, travels back to the buffer zone, and unloads the pallet. At
this point, the forklift has completed a double cycle and the process is repeated
until all transport orders are finished.

Given the DCSRP as described above, the aim of a warehouse manager is
to find a sequence of transportation that minimizes the total traveling distance
of the forklift. In other words, the goal is to determine a combination of double
cycles that results in minimal traveling distance. Such a sequencing problem can
be viewed as a permutation problem. Permutation is one of the NP-hard prob-
lems for which there does not exist any exact algorithms that can give optimal
solutions in polynomial time. For this class of problem, (meta-) heuristics are
commonly employed to approximate the optimal solutions. In the following, we
show that our formulated problem has the computational complexity of factorial,
and thus call for the use of evolutionary algorithms as a solution approach.

Assuming that a symmetrical order volume consists of n storage and n re-
trieval jobs; therefore, n double cycles have to be executed by the forklift in a
consecutive sequence. The first of the n storage jobs may be followed by one of
the n retrieval jobs. Then, the second may be followed by one of the (n − 1)
remaining retrieval jobs. Similarly for the rest of the n storage jobs, there will
have a total of n! possible sequences of double cycles that can be chosen. Since
any of the n storage jobs can be chosen first in the sequence, the number of all
possible double-cycle sequences theoretically amounts to (n!)2.

However, the ordering of double cycles normally has no effect on the overall
distance [4]. This means that the two double-cycle sequences 1–4–7 and 7–4–
1, for example, are considered to be the same. Thanks to this property, the
number of possible sequences of a symmetrical order volume with n storage and
n retrieval jobs is reduced to n!.

2.2 Problem Formulation

To facilitate the formulation, some assumptions and notations are needed.

Assumptions:

• First of all, the number of storage jobs and retrieval jobs in each aisle are
equal and this symmetric order volume is known beforehand.

• The forklift starts and ends a trip at the buffer zone; so, there is no need to
add the traveling cost from the ending point of a trip to the starting point
of the next trip.

• The forklift can identify the pallets that need to be picked up or retrieved.

Notations:

S: the set of storage jobs, with |S| = n being the no. of storage jobs in S.

R: the set of retrieval jobs, with |R| = n being the no. of retrieval jobs in R.

B: buffer area where stored pallets and retrieved pallets are located.
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d(B → Si): distance from the buffer area to storage position Si, Si ∈ S.

d(Si → Rj): distance from storage position Si to retrieval position Rj .

d(Rj → B): distance from retrieval position Rj to the buffer position.

Pk: the k-th permutation of the set R, indicating an ordering (i.e. sequence)
of retrieval jobs, where k = 1, 2, . . . , n!. For example, withR = {R1, R2, R3, R4},
a permutation of R could be {R2, R1, R3, R4}. Pk is an ordered set.

PΣ : the set of all possible permutations, i.e. PΣ = {Pk}
n!
k=1

Cj(Pk): the cost of double cycle j, where j = 1, 2, . . . , n. Note that there are
exactly n double cycles in each sequence.

TC(Pk): total cost to complete n double cycles associated with Pk.

With the above notations, let us consider a DCSRP with symmetrical order vol-
ume consisting of n storage jobs and n retrieval jobs. The cost of a double cycle j
in the sequence corresponding to the permutation Pk, where k = 1, 2, . . . , n!, is
calculated by Eq. 1:

Cj(Pk) = d(B → Si) + d(Si → Rj) + d(Rj → B), (1)

where Si ∈ S with i = 1, 2, ..., n, and Rj ∈ Pk with j = 1, 2, ..., n. Finally, the
total cost to complete n double cycles in permutation Pk is computed by Eq. 2:

TC(Pk) =

n
∑

j=1

Cj(Pk). (2)

The objective of solving the DCSRP is to find a permutation P ∗ ∈ PΣ of
the set R [of retrieval jobs] that minimizes the total traveling distance of the
forklift:

P ∗ = arg

[

min
Pk∈PΣ

(TC (Pk))

]

. (3)

Eventually, the optimal solution of the DCSRP is a sequence of n double
cycles. Each double cycle i of the sequence consists of a pair of the storage
job Si and the retrieval job Rj , where Rj is the i-th element of P ∗. Let us
consider an example with 4 storage jobs S = {S1, S2, S3, S4} and 4 retrieval jobs
R = {R3, R2, R1, R4}. Assuming that the optimal solution of this DCSRP is
P ∗ = {R3, R2, R1, R4}, then the optimal sequence of double cycles is:

(B → S1 → R3 −→ B → S2 → R2 −→ B → S3 → R1 −→ B → S4 → R4 → B)

It is worth noting that the permutation of the set S of n storage jobs does
not affect the solution of the problem. Note also that the DCSRP is subject to
a number of constraints. The first constraint is that each storage job position
or retrieval job position can only be visited once. Second, in each double cycle,
the forklift must firstly visit a storage location to unload the pallet and then
move to a retrieval position to load the retrieval pallet; and this order must be
respected. Third, after loading a retrieval pallet, the forklift must always move
to the buffer area where the pallet is to be pre-stored. In the next section, we
will discuss the use of genetic algorithms to solve the formulated DCSRP.
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3 Genetic Algorithms for the DCSRP

Genetic algorithms (GAs) [8] are perhaps among the most widely used evolution-
ary optimization techniques. GAs are adaptive randomized searchers that simu-
late the genetic inheritance and the Darwinian principle of striving for survival
in nature. One might find GAs simple to implement, fun to use, and versatile
to solve a wide range of problems. GAs are often useful to problems for which
there is no algorithm available or the computation to reach the exact optimum
is unaffordable. The pseudocode of typical GAs is given in Alg. 1.

Algorithm 1 Pseudocode of Genetic Algorithms

1: initialization: randomly generate a population of N individuals
2: evaluation: evaluate the initial population
3: while (not stopping criteria) do
4: mating selection: select parents to reproduce offsprings
5: crossover: apply crossover operator to the mating pool to generate offsprings
6: mutation: mutate the offsprings by [genetic] mutation operator
7: evaluation: evaluate the offspring population
8: survivor selection: select individuals for the next generation
9: end while

First of all, we have to define how a candidate solution to the problem is
represented in GAs. For the DCSRP formulated in Sect. 2.2, it is quite straight-
forward to use integer numbers from 1 to n (with n being the number of retrieval
jobs) to directly encode a retrieval job’s number. By this way, a candidate so-
lution to the DCSRP is just a series of unique integers; and the ordering of
the numbers in this series determines which retrieval job to be handled together
with which storage job in a double cycle. More precisely, the value (from 1 to n)
of an integer in the series indicates the retrieval job’s number, while the position
(also from 1 to n) of this integer in the series indicates the companion storage
job’s number. In other words, a permutation of the series generates a candidate
solution to the problem. With this encoding scheme, it is trivial to create an
initial population of N individuals for GAs, just by performing N permutations.

Given a candidate solution, it is essential to compute the objective value (i.e.
the cost, or the total traveling distance in this case) associated with it. Using
the above-mentioned encoding strategy and the problem formulation given in
Sect. 2.2, the cost of a solution is computed by summing up the costs induced
by all component double cycles (see Eq. 2). The cost of each double cycle, in its
turn, is—as denoted in Eq. 1—the summation of three components: the distance
from the buffer to the storage location, the distance between the storage and
retrieval jobs, and the distance from the retrieval job to the buffer. By these
calculations, every feasible solution (i.e. a series of unique integers from 1 to n)
can be evaluated for its objective value.

In addition to the representation and evaluation function, the determination
of proper genetic operators, including crossover and mutation, are of paramount
importance to a GA. These operators are strongly dependent on the solution
representation. For the permutation encoding described above, there exist a
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number of crossover and mutation operators that can be applied. In this work,
five crossover operators: (1) order crossover (OX), (2) partially mapped crossover
(PMX), (3) cycle crossover (CX), (4) position-based crossover (PBX), and (5) mod-
ified order crossover (MOX); and two mutation operators: (1) reciprocal ex-
change (or swap) mutation (S) and (2) inversion mutation (I), were selected to
deploy. Due to the space limitation, complete details about these operators are
not given in this paper; a full description is therefore redirected to [10, 8, 5].

Such operators have been widely tested on the TSP and scheduling problem.
As pointed out in p. 242 of [8], both problems are of sequencing type but they
differ in characteristics and thus require different operators. The adjacency infor-
mation (i.e. distances between cities) is important for the TSP but not applicable
to the scheduling problem, while the relative order of items is not important for
the TSP yet is of great concern in the scheduling problem. It is clear from the
above encoding that the formulated DCSRP displays different properties than
both the TSP and the scheduling problem, as no adjacency information exists
and the relative order of integers in the series is also not a decisive factor. The
motivation here is therefore to evaluate several operators and to learn about
their performance on the DCSRP.

In order to complete the nuts and bolts of a GA, some other components
need also to be defined. For mating selection, in this work, we employ the binary
tournament selection strategy. This tournament selection could favor a low se-
lection pressure [9], which has been known to be useful in preventing premature
stagnation during the evolution. Additionally, it is required to have another se-
lection mechanism in between two consecutive generations. In this study, when a
new population is generated and evaluated, GAs evolves to the next generation
by discarding the parent population except for its best individual. The best of
the past population replaces the worst of the current population. This survivor
selection mechanism is often referred to as the generational-with-elitism strategy.

4 Experiments and Discussions

In this section, an extensive analysis is presented to verify the validity of the
proposed approach to the DCSRP and to answer the question of which genetic
operators are most suitable for the formulated problem. For problem instances,
we used two real warehouse datasets, having pallets stored in one and two aisles,
respectively. For the dataset of one aisle, different instances with the symmetric
order volumes of 10, 20, and 30 pallets were simulated by sampling randomly
from the aisle, repeated twice for each volume, resulting in six instances. The
same procedure was applied to the dataset of two aisles, but with the symmetric
order volumes of 10, 20, 30, 40, 50, 60, and 70 pallets being sampled, resulting in
14 instances. Consequently, we solved a total of 20 problem instances. It should
be noted that the four instances with a ten-pallet volume are practically small;
they are still possible to be solved to optimality by an enumeration method.
Their true optimal solutions could therefore be known exactly.

For algorithms, we considered five crossovers and two mutations as listed in
Sect. 3, which amounts to a total of ten GAs. Each GA is then referred to by
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its crossover’s and mutation’s abbreviations; the S+OX, for example, thereby
refers to the GA using swap mutation and order crossover. All the GAs used a
crossover rate pcross = 1, a mutation rate pmut = 0.15, and a fixed population
size popsize = 100. On each problem instance, each GA was launched 30 times
with different initial populations to mitigate its random effect. With 20 instances
and ten GAs, we performed a total of 6000 runs. As a simple stopping criterion,
we terminated a run after a fix number of generations, which was set empirically
to 200 for those instances with a volume of 30 or less, and to 500 for those with
larger volumes. It is worth noting that, for evaluating a solution, the distances in
Eq. 1 were computed prior to the GA runs using a shortest path method; these
distances thereby reflect the real traveling distances in the warehouse.

The performance of ten GAs on three typical instances are presented in Fig. 3.
It can be clearly observed that the GAs with an OX or MOX crossover performs
worst, no matter which mutation it goes with. For the GAs with PMX, CX, and
PBX, the performance depends greatly on mutation: those GAs with inversion
mutation perform worse than their counterparts with swap mutation; and for
the GAs using swap mutation, those equipped with PMX and CX impressively
outperform all the other GAs. The difference between S+PMX and S+CX is
however unobvious. These trends are invariant across the three instance sizes.
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Fig. 3. Solutions in 30 runs of ten GAs across three instance sizes 30, 50, and 70, which
are presented in the lower (yellow), middle (green), and upper (magenta) boxplots,
respectively. In each plot, the lower a box, the better is the corresponding algorithm.
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Table 1 summarize the best algorithm (i.e. the winner out of the ten GAs)
in terms of its median-quality solution across 30 runs. This table is compiled
from the results of all the 6000 runs of the ten GAs. Three main remarks can be
drawn from this table. First, the GA with swap mutation and PMX crossover
perform best on most of the instances and datasets. Second, the same GA but
with CX crossover perform better on the instances of size 50; and this could
also be observed in the middle boxplot in Fig. 3. Interestingly, for the two 30-
pallet instances from the one-aisle dataset, the two mentioned GAs dominate
each other by random. Third, for small instances with only 10 pallets, all GAs
could finally find the true optima. The computational budget for the GAs here
is much smaller than the enumeration method’s. These results could therefore
reflect somewhat the effectiveness and efficiency of the proposed approach.

Table 1. The best algorithms in terms of median over 30 runs of the best achieved
objective value in each run. For each of the datasets (one and two aisles), two random
order lists were sampled to create two random instances. A ‘–’ indicates the unavailabil-
ity of an instance for the corresponding size. An ‘all’ denotes that all ten algorithms
could equally solve the instance to optimality, thus they are incomparable in the end.

Instance 10 20 30 40 50 60 70

One aisle 1 all S+PMX S+PMX – – – –
One aisle 2 all S+PMX S+CX – – – –
Two aisles 1 all S+PMX S+PMX S+PMX S+CX S+PMX S+PMX
Two aisles 2 all S+PMX S+PMX S+PMX S+CX S+PMX S+PMX

Finally, Fig. 4 provides some insight into the evolution of the ten GAs. The
profiles of S+PMX and S+CX, in addition to the plots in Fig. 3, once again
confirm their suitability for the formulated problem. The swap mutation provides
better convergence than the inversion. And more importantly, the PMX and CX
crossovers exhibit a persuasive success on the DCSRP.
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Fig. 4. The 30 run profiles of ten GAs on an instance of size 60. At each generation
in a run, the best-so-far objective value of each GA was recorded, forming a profile for
that run. Thirty profiles for each GA are plotted in the same transparent color in the
background. The median of the 30 profiles is plotted by a thick line of the same color.
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5 Conclusions

The double-cycle storage and retrieval problem is an important problem in ware-
house operations. Notwithstanding its relevance and importance, there is a lack
of general-purpose solution approaches to this problem in the literature. In this
work, we have formulated the DCSRP as a permutation problem and solved it
using genetic algorithms. Since this problem was not given due attention in the
evolutionary optimization community, less or no knowledge about which genetic
operators work best on it. Through an extensive experiment, we could draw a
conclusion that the GA equipped with a swap mutation coupled with a PMX or
CX crossover clearly outperforms the GAs using any of the other genetic opera-
tors under consideration. The second conclusion is that, for instances of as small
size as 10 with the exact optimum being known, GAs can efficiently solve the
instances to optimality within a limited number of function evaluations. What
still remain interesting to know are the impact of other GA parameters, such
as crossover and mutation rates, and the effectiveness of the algorithm when
the problem size grows to a much larger number of items, e.g. hundreds or even
thousands. These questions deserve further investigations into the DCSRP.
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