M. Boulakia, E. Schenone, and J. F. Gerbeau, Reduced-order modeling for cardiac electrophysiology. Application to parameter identification, International Journal for Numerical Methods in Biomedical Engineering, vol.51, issue.10, 2012.
DOI : 10.1002/cnm.2465

URL : https://hal.archives-ouvertes.fr/hal-00644396

M. Boulakia, A. Miguel, J. Fernández, N. Gerbeau, and . Zemzemi, Numerical simulation of electrocardiograms, Modeling of Physiological Flows, pp.77-106, 2012.
DOI : 10.1007/978-88-470-1935-5_4

A. Bueno-orovio, Mathematical modeling and spectral simulation of genetic diseases in the human heart, 2007.

A. Bueno-orovio, E. M. Cherry, and F. H. Fenton, Minimal model for human ventricular action potentials in tissue, Journal of Theoretical Biology, vol.253, issue.3, 2008.
DOI : 10.1016/j.jtbi.2008.03.029

J. C. Clements, J. Nenonen, P. K. Li, and B. M. Horacek, Activation Dynamics in Anisotropic Cardiac Tissue via Decoupling, Annals of Biomedical Engineering, vol.32, issue.7, p.32, 2004.
DOI : 10.1023/B:ABME.0000032461.80932.eb

P. C. Franzone and L. F. Pavarino, A PARALLEL SOLVER FOR REACTION???DIFFUSION SYSTEMS IN COMPUTATIONAL ELECTROCARDIOLOGY, Mathematical Models and Methods in Applied Sciences, vol.14, issue.06, 2004.
DOI : 10.1142/S0218202504003489

P. C. Franzone, L. F. Pavarino, and B. Taccardi, Simulating patterns of excitation, repolarization and action potential duration with cardiac Bidomain and Monodomain models, Mathematical Biosciences, vol.197, issue.1, 2005.
DOI : 10.1016/j.mbs.2005.04.003

C. C. Mitchell and D. G. Schaeffer, A two-current model for the dynamics of cardiac membrane, Bulletin of Mathematical Biology, vol.65, issue.5, 2003.
DOI : 10.1016/S0092-8240(03)00041-7

J. C. Neu and W. Krassowska, Homogenization of syncytial tissues a comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart, IEEE Transactions on Biomedical Engineering, vol.21, issue.2, 1993.

M. Pennacchio, G. Savaré, and P. Colli-franzone, Multiscale Modeling for the Bioelectric Activity of the Heart, SIAM Journal on Mathematical Analysis, vol.37, issue.4, 2005.
DOI : 10.1137/040615249

M. Potse, B. Dubé, J. Richer, A. Vinet, and R. M. Gulrajani, A Comparison of Monodomain and Bidomain Reaction-Diffusion Models for Action Potential Propagation in the Human Heart, IEEE Transactions on Biomedical Engineering, vol.53, issue.12, p.53, 2006.
DOI : 10.1109/TBME.2006.880875

M. Rathinam and L. R. Petzold, A New Look at Proper Orthogonal Decomposition, SIAM Journal on Numerical Analysis, vol.41, issue.5
DOI : 10.1137/S0036142901389049

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.80.389

F. B. Sachse, Computational Cardiology, Modeling of Anatomy, Electrophysiology, and Mechanics, 2004.

S. Scacchi, L. F. Pavarino, and I. Milano, Multilevel Schwarz and Multigrid Preconditioners for the Bidomain System, Lecture Notes in Computational Science and Engineering, issue.631, p.60, 2008.
DOI : 10.1007/978-3-540-75199-1_79

J. Sundnes, G. T. Lines, X. Cai, B. F. Nielsen, K. A. Mardal et al., Computing the electrical activity in the heart, 2006.

K. , T. Tusscher, and A. V. Panfilov, Cell model for efficient simulation of wave propagation in human ventricular tissue under normal and pathological conditions, Phys. Med. Biol, issue.23, p.51, 2006.

K. H. Ten-tusscher, D. Noble, P. J. Noble, and A. V. Panfilov, A model for human ventricular tissue, AJP: Heart and Circulatory Physiology, vol.286, issue.4, 2004.
DOI : 10.1152/ajpheart.00794.2003

S. Volkwein, Model reduction using proper orthogonal decomposition, Lecture Notes, Institute of Mathematics ans Scientific Computing