
HAL Id: hal-01058763
https://inria.hal.science/hal-01058763

Submitted on 28 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Governance in Open Source Software Development
Projects: A Comparative Multi-level Analysis

Chris Jensen, Walt Scacchi

To cite this version:
Chris Jensen, Walt Scacchi. Governance in Open Source Software Development Projects: A Compara-
tive Multi-level Analysis. 6th International IFIP WG 2.13 Conference on Open Source Systems,(OSS),
May 2010, Notre Dame, United States. pp.130-142, �10.1007/978-3-642-13244-5_11�. �hal-01058763�

https://inria.hal.science/hal-01058763
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Governance in Open Source Software Development Projects: A Comparative Multi-

Level Analysis

1

Governance in Open Source Software
Development Projects: A Comparative Multi-

Level Analysis

Chris Jensen and Walt Scacchi

Institute for Software Research
University of California, Irvine

Irvine, CA 92697-3455
{cjensen, wscacchi}@ics.uci.edu

ABSTRACT

Open source software (OSS) development is a community-oriented, network-

centric approach to building complex software systems. OSS projects are

typically organized as edge organizations lacking an explicit management

regime to control and coordinate decentralized project work. However, a

growing number of OSS projects are developing, delivering, and supporting

large-scale software systems, displacing proprietary software alternatives.

Recent empirical studies of OSS projects reveal that OSS developers often

self-organize into organizational forms we characterize as evolving socio-

technical interaction networks (STINs). STINs emerge in ways that

effectively control semi-autonomous OSS developers and coordinate project

activities, producing reliable and adaptive software systems. In this paper, we

examine how practices and processes enable and govern OSS projects when

coalesced and configured as contingent, socio-technical interaction networks.

We draw on data sources and results from two ongoing case studies of

governance activities and elements in a large OSS project.

1. Introduction and Overview

In this paper, we contribute to this growing understanding for how to

characterize the ways and means for affecting governance within and across OSS

projects, as well as the participants and technologies that enable these projects and

the larger communities of practice in which they operate and interact. Specifically,

our contribution centers around providing an alternative perspective and analytical

construct that offers multi-level analysis and explanation, as well as a framework for

2 Chris Jensen and Walt Scacchi

comparison and generalization based on empirical studies of OSS projects, work

practices, development processes, and community dynamics [cf. 20]. The

perspective draws from socio-technical interaction networks (STINs) [18] as a

persistent organizational form for collective action with/through technical

(computing) work systems, and also puts forward STINs as the analytical construct

that serves as an organizing concept, configurational form [13], and adaptive process

that both enacts and explains how governance in OSS projects is realized and

directed.

Our belief is that the governance practices enacted through STINs found in OSS

projects can be framed as possible options for understanding how these projects can

develop complex and reliable software without an explicit, centralized software

project management regime. Further, these STINs act in a self-organizing manner to

effectively realize a decentralized approach to organize, coordinate and control a

dispersed, somewhat autonomous work force. This in turn can then be used to both

understand the foundations for OSS organizational practices in the development,

deployment, and support of complex software systems.

2. Analytical Levels and Elements for Understanding Governance

in OSS Projects

OSS work practices, engineering processes, and community dynamics can best

be understood through observation and examination of their socio-technical elements

from multiple levels of analysis [20]. In particular, OSS projects can be examined

through a micro-level analysis of (a) the actions, beliefs, and motivations of

individual OSS project participants, and (b) the social or technical resources that are

mobilized and configured to support, subsidize, and sustain OSS work and outcomes

[19]. Similarly, OSS projects can be examined through meso-level analysis of (c)

patterns of cooperation, coordination, control, leadership, role migration, and conflict

mitigation, and (d) project alliances and inter-project socio-technical networking [4].

Table 1. OSS governance analytical levels and emergent themes

Analyti

cal Level

Agents Emergent Themes

Micro Individual

participants

Individual actions and resources, artifacts and

resources as objects of interaction

Meso Project

teams

Collaboration, leadership, control, conflict

resolution

Macro Inter-

project

ecosystem

Coordination, leadership, control, conflict

resolution

Governance in Open Source Software Development Projects: A Comparative Multi-

Level Analysis

3

Last, OSS projects can also be examined through macro-level analysis of (d) multi-

project OSS ecosystems, and (e) OSS as a social movement and emerging global

culture. As such, we will provide a multi-level analysis of the elements of OSS

governance. Recent research on software development governance showed there are

many issues critical to governing software development, including decision rights,

responsibilities, roles, accountability, policies and guidelines, and processes [25].

The governance issues we have identified at these three levels in OSS bear

similarities (see Table 1).

We engage in multi-level analysis of the elements of OSS governance using data

sources and empirical results drawn from an ongoing, longitudinal case study of OSS

projects. Our results have emerged from several years of research on how OSS

practitioners organize themselves to get work done and what social and technical

processes are employed in development, including recruitment and role migration or

project participants, how software requirements are asserted, and how products are

released. Our research is ethnographic, using a grounded theory approach to the

analysis of project artifacts, including email discussions, chat transcripts, summary

digests, (and others), as well as face-to-face interviews of project contributors.

The project of study is NetBeans, a sponsored OSS project focused on the

development, support, and evolution of a Java-centered, Integrated Development

Environment (IDE), which is a tool for developing Web-based enterprise software

applications coded in the Java programming language that utilize other Java-based

software products and services, such as those offered by Sun Microsystems Inc. [10].

NetBeans is a large OSS project with more than 400,000 active users, and tens of

thousands of contributors.

Finally, it is our view that the elements of OSS governance span these multiple

levels of analysis because they coalesce and are actively configured by OSS project

participants into network forms for collective action—networks we designate as

socio-technical interaction networks (STINs) [18]. Why? Our observation drawn

from our own studies of OSS and those of others [4, 5, 13, 20] suggest to us that

governance activities, efforts, and mechanisms are not disjoint or unrelated to one

another, but instead are arrayed and configured by OSS project participants into

networks for mobilizing socio-technical interactions, resources, rules, and

organizational forms. Project participants are only accountable to each other, and not

to corporate owners, senior executives, or stock investors. They can often suffice

with lightweight governance forms that they configure and adapt to their needs and

situations, rather than to budget, schedules, or profit growth. Accordingly, they

choose organizational forms that are neither purely a decentralized market (a

“bazaar”) nor a centralized hierarchy (a “cathedral”), but instead choose a more agile

network form that can be readily be adapted to local contingencies or emergent

conditions that arise in the interactions among project participants, the technical

computing systems/resources at hand, or the joint socio-technical system that is the

OSS project. Thus, our multi-level analysis is one that is construed to draw attention

4 Chris Jensen and Walt Scacchi

to the persistent yet adaptive STINs that participants enact to span and govern OSS

projects, practices, and processes that arise at different levels of socio-technical

interaction.

3. Micro-Level Analysis of OSS Governance Issues

Our analysis of OSS governance begins by examining what resources OSS

project participants mobilize to help govern the overall activities of their project

work and contributions. Much of the development work that occurs in an OSS

project centers around resources that enable the creation, update, and other actions

(e.g., copy, move, delete) applied to a variety of software development artifacts.

These resources and artifacts serve as coordination mechanisms [16, 21, 22], in that

they help participants communicate, document, maintain awareness, and otherwise

make sense of how the software is structured/designed, what the emerging software

system is suppose to do, how it should be or was accomplished, who did what, what

went wrong before, and how to fix it. These artifacts help in coordinating local,

project-specific development activities, whereas between multiple project

communities, these artifacts emerge as boundary objects [10, 12] through which

inter-project activities and relations are negotiated and revised. The artifacts may

take the form of text messages posted to a project discussion list, webpages, source

code directories and files, site maps, and more, and they are employed as the primary

media through which software requirements and design are expressed. These

artifacts are software informalisms that are collectively used to manage the

consistency, completeness, and traceability of software functionality, development

activities, and developer comprehension [17]. They act as coordination resources in

OSS projects since participants generally are not co-located, do not meet face-to-

face, often work asynchronously, and authority and expertise relationships among

participants are up for grabs.

Accordingly, in order to explore where issues of collaboration, leadership,

control and conflict may arise within or across related OSS projects, then one place

to look to see such issues is in how project participants create, update, exchange,

debate, and make sense of the software informalisms that are employed to coordinate

their development activities. This is the approach taken here in exploring the issues

both within the NetBeans project, as well as across the fragile software ecosystem of

inter-related OSS projects that situate NetBeans within a Web information

infrastructure [10].

Governance in Open Source Software Development Projects: A Comparative Multi-

Level Analysis

5

4. Meso-Level Analysis of OSS Governance Issues

At the meso-level, have observed at least three kinds of governance elements that

arise within an OSS community like NetBeans. These are collaboration, leadership

and control, and conflict resolution.

4.1. Collaboration

According to the NetBeans website, individuals may participate by joining in

discussions on mailing lists, filing bug and enhancement reports, contributing Web

content, source code, newsletter articles, and language translations [11]. These

activities can be done in isolation, without coordinating with other community

members, and then offered up for consideration and inclusion. Reducing the need

for collaboration is a common practice in the community that gives rise to positive

and negative effects. We discuss collaboration in terms of policies that support

process structures that prevent conflict, looking at task completion guidelines and

community architecture.

4.1.1. Policies and Guidelines

The NetBeans community has detailed procedural guidelines for most common

development tasks, from submitting bug fixes to user interface design and creating a

new release [24]. We can classify these guidelines as development task and design

style guidelines. Incidentally, the procedures for policy revision have not been

explicitly specified, though social norms have developed to govern their revision.

Precedent states that policy and procedure revisions are brought up on the

community or module discussion mailing lists, where they are debated and either

ratified or rejected by consensus. Consensus here means some support from at least

one or two other developers, along with the absence of strong conflicts or major

disagreements by other project contributors. Developers are expected to take notice

of the decision and act accordingly, while the requisite guideline documents are

updated to reflect the changes. In addition, as some communities resort to “public

flogging” for failure to follow stated procedures, requests for revision are rare and

usually well known among concerned parties, so no such flogging is done within

NetBeans.

Overall, these policies allow individual developers to work independently within

a process structure that enables collaboration by encouraging or reinforcing

developers to work in ways that are expected by their fellow community members,

as well as congruent with the community process.

6 Chris Jensen and Walt Scacchi

4.1.2. Separation of Concerns: an Architectural Strategy for Collaborative

Success

Software products often employ a modular, plug-in application program interface

(API) architectural style in order to facilitate development of add-on components

that extend system functionality. This strategy has been essential in an open source

arena that carries freedom of extensibility as a basic privilege or, in some cases, the

right of free speech or freedom of expression through contributed source code. But

this separation of concerns strategy for code management and software architecture

also provides a degree of separation of concerns in developer management, and

therefore, collaboration [cf. 2, 16, 9].

In concept, a module team can take the plug-in API specification and develop a

modular extension for the system in complete isolation from the rest of the

community. This flexibility is attractive to third-party contributors in the NetBeans

community who may be uninterested in heavy involvement in the project, or who are

unwilling or unable to contribute their source code back to the community. This

separation of concerns in the NetBeans design architecture engenders separation of

concerns in the development process [10]. Still, module dependencies limit

development isolation.

Last, volunteer community members have observed difficulties collaborating

with non-volunteer community members. At one point volunteer contributors

experienced a lack of responsiveness of the (primarily Sun employed) user interface

team1. This coordination breakdown led to the failure of usability efforts for a period

when usability was arguably the most-cited reason users chose competing tools over

NetBeans. Thus, a collaboration failure gave rise to product failure. After resolving

collaboration issues NetBeans was able to deliver a satisfactory usability

experience2.

4.2. Leadership and Control

Ignoring internal Sun's organizational structure, there are five observable layers

of the NetBeans community hierarchy. Members may take on multiple roles while

migrating through different role sets [11]. Some of these roles span several layers of

software functionality, development activity, commitment, and expertise. At the

bottom layer are users, who can later migrate upward into roles as source

contributors, module-level managers, project level release managers (i.e. IDE or

development platform), and finally, community level managers at the top-most layer.

Interestingly, the “management” positions are limited to coordinating roles; they

carry no other technical or managerial authority. The release manager, for example,

has no authority to determine what will be included in and excluded from the

1 http://www.netbeans.org/servlets/ReadMsg?msgId=531512&listName=nbdiscuss
2 http://www.javalobby.org/thread.jspa?forumID=61&threadID=9550#top

Governance in Open Source Software Development Projects: A Comparative Multi-

Level Analysis

7

release3 or the authority to assign people to complete the tasks required to release the

product. The same is true of module and community managers. Instead, their role is

to announce the tasks that need to be done and wait for volunteers to accept

responsibility. Overall, this practice at NetBeans resembles the adaptive hybrid mix

of organizational governance mechanisms that O'Mahony and Ferraro [15] found in

their study of the Debian project.

In NetBeans, we find that accountability and expectations of responsibility are

based on precedent (prior practices) and volunteerism rather than explicit

assignment. Such uncertainty has led to confusion regarding the role of parties

contributing to development. Leadership is not asserted until a community member

champions a cause and while volunteerism is expected, this expectation is not always

obvious. The lack of a clear authority structure is both a cause of freedom and chaos

in open source development. Though often seen as one of its strengths in

comparison to closed source efforts, it can lead to process failure if no one steps

forward to perform critical activities or if misidentified expectations cause dissent.

The coordination challenges across organizations occasionally brought up in the

community mailing lists stem from the lack of a shared understanding leadership in

the community. This manifests itself in two ways: a lack of transparency in the

decision making process and decision making without community consent. While

not new phenomenon, they are especially poignant in a movement whose basic

tenets include freedom and knowledge sharing.

4.2.1. Transparency in the Decision Making Process

In communities with corporately backed development effort, there are often

decisions made that create a community-wide impact that are made company

meetings. However, these decisions may not be explicitly communicated to the rest

of the project. Likewise private communication between parties may cause similar

breakdowns. The lack of transparency in decision-making process prevented other

community members from understanding and accepting the changes taking place.

This effect surfaced in the NetBeans community recently following a discussion of

modifying the release process4. Given the magnitude of contributions from the

primary benefactor, other developers were unsure of the responsibility and authority

Sun assumed within the development process. The omission of a stated policy

outlining these bounds led to a flurry of excitement when Sun members announced

major changes to the licensing scheme used by the community without any warning.

It has also caused occasional collaboration breakdown throughout the community

due to expectations of who would carry out which development tasks. The otherwise

implicit nature of Sun's contributions in relation to other organizations and

individuals has been revealed primarily through precedent rather than assertion.

3 http://www.netbeans.org/community/guidelines/process.html
4 http://www.netbeans.org/servlets/BrowseList?

listName=nbdiscuss&by=thread&from=19116&to=19116&first=1&count=41

8 Chris Jensen and Walt Scacchi

4.2.2. Consent in the Decision Making Process

Without an explicit authority structure, OSS decisions in NetBeans are made

through consensus, except among those over-arching or broad scope decisions that

lack transparency. In the case of the licensing scheme change, some developers

expressed their view that Sun was within its rights as the major contributor and the

most exposed to legal threat 5 while others saw it as an attack on the "democratic

protection mechanisms" of the community that ensure fairness between participating

parties6. A lack of consideration and transparency in the decision making process

alienated those who are not consulted and eroded the sense of community.

4.3. Conflict Resolution

Conflicts in the NetBeans community are resolved via community discussion

mailing lists. The process usually begins when one member announces

dissatisfaction with an issue in development. Those who also feel concern with the

particular issue then write responses to the charges raised. At some point, the

conversation dissipates- usually when emotions are set aside and clarifications have

been made that provide an understanding of the issue at hand. If the problem

persists, the community governance board is tasked with resolving the matter.

The governance board is composed of three individuals and has the role of

ensuring the fairness throughout the community by solving persistent disputes. Two

of the members are elected by the community, and one is appointed by Sun. The

board's authority and scope are questionable and untested. While it has been

suggested that the board intercede in the past, the disputes have dissolved before the

board has acted.s

Board members are typically prominent members in the community. Their status

carries somewhat more weight in community policy discussions, however, even

when one member has suggested a decision, as no three board members have ever

voted in resolution on any issue, and thus, it is unclear what effect would result.

Their role, then, is more of a mediator: to drive community members to resolve the

issue amongst themselves. To this end, they have been effective.

5. Macro-Level Analysis of OSS Governance Issues

As noted earlier, the NetBeans project is not an isolated OSS project. Instead, the

NetBeans IDE which is the focus of development activities in the NetBeans project

is envisioned to support the interactive development of Web-compatible software

applications or services that can be accessed, executed, or served through other OSS

5 http://www.netbeans.org/servlets/ReadMsg?msgId=534707&listName=nbdiscuss
6 http://www.netbeans.org/servlets/ReadMsg?msgId=534520&listName=nbdiscuss

Governance in Open Source Software Development Projects: A Comparative Multi-

Level Analysis

9

systems like the Mozilla Web browser and Apache Web server. Thus, it is

reasonable to explore how the NetBeans project is situated within an ecosystem of

inter-related OSS projects that facilitate or constrain the intended usage of the

NetBeans IDE. Figure 1 provides a rendering of some of the more visible OSS

projects that surround and embed the NetBeans within a Web information

infrastructure [10]. This rendering also suggests that issues of like coordination

(integration of software products and development effort) and conflict can arise at

the boundaries between projects, and thus these issues constitute relations that can

emerge between projects in a software ecosystem. With such a framing in mind,

we look at coordination, leadership and control, and conflict resolution issues arising

across projects that surround the NetBeans project.

5.1. Coordination

In addition to their IDE, NetBeans also releases a general application

development platform on which the IDE is based. Other organizations, such as

BioBeans and RefactorIT build tools on top of or extending the NetBeans platform

or IDE. These organizations interact via bug reports, patches, and feature requests

submitted to the NetBeans issue-tracking repository. Moreover, NetBeans (in part

via its sponsoring organization) is a member of the Java.net and Java Tools

communities, whose missions are to bring tool developers together to form standards

for tool interoperability.

5.2. Leadership and Control

Leadership and control of the ecosystem is difficult to exert and more difficult to

observe. However, at one point, NetBeans and its primary OSS competitor, the

Eclipse Java IDE project (sponsored largely by IBM), considered merging as a single

project. Ultimately, the union failed to emerge, largely due to (a) technical and

organizational differences between Sun and IBM7, including the inability or

unwillingness to determine how to integrate the architectures and code bases for their

respective user interface development frameworks (Swing for NetBeans and SWT

for Eclipse), and (b) the potential for either company to be viewed as having lost in

it's ability to assert technological superiority or design competence.

7 http://www.adtmag.com/article.asp?id=8634, and

http://www.eweek.com/article2/0,1759,1460110,00.asp

10 Chris Jensen and Walt Scacchi

5.3. Conflict Resolution

Conflicts among communities in a software ecosystem can be especially complex

considering differences in beliefs, values, and norms between organizations (both

open and non-open source) in addition to technical hurdles

NetBeans has a defined leadership and organizational structure, in part vis a vis

its relationship with Sun Microsystems. Thus, Sun representatives play a significant

role in macro-level conflict resolution involving the NetBeans community, as shown

in the negotiations with Eclipse. Community member feedback extended beyond

intra-community communication channels to include prominent technical forums

(e.g. Slashdot and developer blogs). Unfortunately, many of these discussions occur

after the collaborating developer has moved away from using NetBeans (often, in

favor of Eclipse). Nevertheless, the feedback they provide gives both parties an

opportunity to increase understanding and assists the NetBeans community by

guiding their technical direction.

6. Discussion

The public communication channels we have seen used in OSS projects like

NetBeans include mailing lists, defect repositories, requests for enhancement,

Internet Relay Chat (IRCs), developer/stakeholder blogs and Web pages, trade

forums, and developer conferences. Of these, mailing lists, defect repositories, and

requests for enhancement (RFEs) are intra-organizational--they exist within project

community boundaries. IRC chats and developer conferences that facilitate

communication may be intra or inter-organizational, in that they can be hosted by the

community or by other organizations. On the other hand, stakeholder webpages and

blogs and trade forums are purely inter-organizational. Communication channels

provide means for enabling intrinsic governance in OSS projects through

collaboration, leadership, control, and conflict negotiation processes. But they do

not tell us much about how developers collaborate, lead, control, and resolve

conflicts, nor what is collaborated on, led, controlled, and causing/resolving

conflicts. We address these here.

In NetBeans, we have observed the following objects of interaction guiding OSS

technical development and social integration processes: (a) project and software

system architecture; (b) community vision/mission statement; (c) release plans and

development roadmap; (d) community policies, task guidelines, and interaction

guidelines; (e) defect reports and request for enhancements (RFEs); (f) mailing list

discussions; and (g) private meetings (work done by organizations associated with

the community). Arguing that project architecture is a primary coordination

mechanism for software development, Ovaska and colleagues [16], and also Baldwin

and Clark [2], collectively observed six coordination processes in multi-site software

Governance in Open Source Software Development Projects: A Comparative Multi-

Level Analysis

11

development like OSS projects. These include managing interfaces between system

components, managing assembly order of system components, managing the

interdependence of system components, communication, overall responsibility, and

orientation (configuration) of the organization.

The link between organizational structure and system design has been known

since Conway first published on the subject, however, in the NetBeans case, it is

impossible to determine whether the system design evolved to reflect the desired

organizational structure or vice versa. This observation also holds true for other

large OSS projects. German [9] observes a similar coordination strategy in Gnome

project: module interrelationships are kept to a minimum so each module can

develop independently, thereby reducing the coordination burden across modules.

Similar to NetBeans, Debian cross-module coordination is managed by a release

team, whose role is to keep development on schedule. In contrast, system design can

also restrict participation in OSS STINs. Core developers of the widely used Pidgin

instant messaging client remain adamant that contributions to the project respect the

strict isolation of user interface and communication protocol code even at the cost of

added frequently requested functionality8. Of added note, the Gnome project does

not have a single primary benefactor, like NetBeans, German reports similar

governance and conflict resolution community structures.

Community interaction modes act as communication channels for governing,

coordinating, and articulating of development tasks. Mission statements are

important to the formation of the community social and technical infrastructure early

in the community’s lifespan when more concrete guidelines have not been explicitly

stated (if established). They are the core instructions for the way individuals and

organizations will interact with the community as a whole. But they are also a

metric by which each release will be judged. Additional release planning activities

in OSS typically consist of asserting the requirements for the release (what work will

be done), the schedule of the release (when will the work be completed), and who

will be responsible for what work (who will do what work) [17].

Defect/product recovery and redesign, as registered through submission of

bug/defect reports is an integral coordination process. Like release planning, defect

reports and RFCs (Request for Comments) tell developers both what work needs to

be done as well as what has not been done yet, without an explicit owner or

administrative supervisor to assign responsibility for doing it.

These observations suggest that governance processes are inherent in activities

requiring coordination or leadership to determine which development tasks need to

be done and when they need to be completed. This is analogous to what has

previously been observed by management scholars (and also OSS developers) as

adaptive “Internet Time” development practices [3] that enable a kind of project self-

governance through adaptive synchronization and stabilization activities.

8 http://developer.pidgin.im/ticket/34

12 Chris Jensen and Walt Scacchi

In some instances, leadership in coordinating development tasks is done in

private meetings or communications between developers, for which little evidence is

public or observable. However, we observed leadership and control of OSS project

community through:

• Contribution of software informalisms (e.g., source, defect reports, requests for

changes, news, internationalizations, etc. [17])

• Articulating and sharing technical expertise (e.g., on the mailing lists and defect

repository reports, [7])

• Coordination of development and other tasks (e.g., through the role of the

release manager, module maintainer, and source code contributors with “commit

access” to shared source code repositories).

The NetBeans community is an unusual project: it receives the majority of its

financial and developmental support from Sun Microsystems. Sun, as the primary

benefactor and community founder, established the community vision, social and

technical infrastructure, funds development by providing many core developers, and

initiates most release plans, driving the development roadmap. Thus, Sun is most

exposed to risks from community failure and external threats. As demonstrated by

Sun’s move to alter the project licensing scheme, exercising this authority

unilaterally led to division within the community, risking breakdown of the project

and development process. As such, social process conflict can give rise to conflict

within the overall technical development process.

Figure 1. An overview of integration and conflict relationships between

NetBeans and other OSS projects that facilitate and constrain activities within

NetBeans [10].

Governance in Open Source Software Development Projects: A Comparative Multi-

Level Analysis

13

Drawing on this, sources of conflict that precipitate some form of active

governance to deliberate and resolve may arise from: (a) community infrastructure,

sociopolitical vision, and direction; (b) technical direction (what should be in the

release, when should a release occur, which tools to use to develop software); (c)

how developers can get involved in making decisions and what roles they play; and

(d) relationships between and alignment of the diverse goals of many organized

groups (e.g., corporations) and unaffiliated volunteers involved in the community.

These conflicts are resolved through OSS governance activities in a variety of ways.

When conflicts arise due to miscommunication or lack of communication between

developers, or between developers and organized groups contributing to the

community, resolution is reached by talking it out on community mailing lists. In

more pronounced cases, it may take project veterans and highly influential

community members to act as mediators. Failing this, in NetBeans, the project

culture prescribes that developers shall bring the issue to the governance board for

deliberation, who will issue a final decision on the matter. Board involvement is

viewed as a last resort, and community members are encouraged to resolve their

conflicts through other means.

We find social processes like collaboration, leadership and control, and conflict

resolution are ways for governing OSS through articulating and reconfiguring the

technical processes that are either unstated or understated. In a way, articulation is

the background social process of making sure people understand the technical

development process [18]. As such, when there is a breakdown, whose

responsibility is it to address or resolve the breakdown? In the NetBeans project,

accountability is only partially assigned but does exist in some fashions. No

complete articulation of governance infrastructure exists in NetBeans. The emerging

processes to do this are collaboration, leadership, control, and conflict negotiation,

which are used to continually re-articulate the process and figure out what is going

on at present. Based on our study, OSS is best understood neither as primarily a

technical development or social process perspective, but instead as an inherent

network of interacting socio-technical processes, where its technical and social

processes are intertwined, co-dependent, co-evolving, and thus inseparable in

performance.

7. Conclusions

The results and interpretations we present on intrinsic governance forms,

conditions, and activities as STINs are limited and therefore preliminary, though

based on empirical case studies. They are limited in that our analysis focuses on two

contrasting case studies, which differ in many ways, and thus represent merely an

initial sample with little knowledge about whether what we have observed in

representative of other types, sizes, or samples of OSS project communities.

14 Chris Jensen and Walt Scacchi

Additional studies may in turn lead us to revise our emerging model of how

governance is realized in globally distributed OSS project communities. However,

we believe that we have observed through empirical study of OSS (by us and others)

the emergence of a comparatively small network of interacting socio-technical

relationships that can serve as foundations that can account for how decentralized

OSS projects can be self-governed. Such a result represents an alternative to the long

dominant views that software development projects must be centrally controlled and

explicitly managed, and must adhere to mature software development process

capabilities, in order to produce complex yet reliable software systems.

8. Acknowledgments

The research described in this report is supported by grants from the Center for

Edge Power at the Naval Postgraduate School, and the National Science Foundation,

#0534771 and #0808783. No endorsement implied.

9. References

[1] Augustin, L., Bressler, D., and Smith, G. 2002. Accelerating Software Development

through Collaboration, Proc. 24th Intern. Conf. Software Engineering, IEEE Computer

Society, Orlando, FL, 559-563.

[2] Baldwin, C.Y. and Clark, K.B. 2006. The architecture of participation: Does code

architecture mitigate free riding in the open source development model? Management

Science, 52(7), 1116-1127.

[3] Cusumano, M. and Yoffe, D. 1999. Software Development on Internet Time, Computer,

32(10), 60-69.

[4] de Laat, P.B. 2004. Evolution of open source networks in industry. The Information

Society, 20(4), 291-299.

[5] de Laast, P.B. 2007. Governance of open source software: state of the art, J. Management

and Governance, 11(2), 165-177.

[6] Elliott, M. and Scacchi, W. 2005. Free Software Development: Cooperation and Conflict

in A Virtual Organizational Culture, in S. Koch (ed.), Free/Open Source Software

Development, 152-172, Idea Publishing, Pittsburgh, PA.

[7] Elliott, M., Ackerman, M., and Scacchi, W. 2007. Knowledge Work Artifacts: Kernel

Cousins for Free/Open Source Software Development, Proc. ACM Conf. Support

Group Work (Group07), Sanibel Island, FL, 177-186.

[8] FOSSBazaar,org: Available at https://fossbazaar.org [last accessed 2 September 2008]

[9] Franck, E. and Jungwirth, C. 2003. Reconciling rent-seekers and donators—The

governance structure of open source, J. Management and Governance, 7(4), 401-421.

[10]German, D. 2004. The GNOME project: a case study of open source, global software

development, Software Process--Improvement and Practice, 8(4), 201-215.

[11]Jensen, C. and Scacchi, W. 2005. Process Modeling of the Web Information

Infrastructure. Software Process—Improvement and Practice, 10(3), 255-272.

Governance in Open Source Software Development Projects: A Comparative Multi-

Level Analysis

15

[12]Jensen, C. and Scacchi, W. 2007. Role Migration and Advancement Processes in OSSD

Projects: A Comparative Case Study, in Proc. 29th. Intern. Conf. Software

Engineering, IEEE Computer Society, Minneapolis, MN, 364-374.

[13]Lee, C. 2007. Boundary Negotiating Artifacts: Unbinding the Routine of Boundary

Objects and Embracing Chaos in Collaborative Work, Computer Supported

Cooperative Work, 16(3), 307-339.

[14]Markus, M.L. 2007. The governance of free/open source software projects: monolithic,

multidimensional, or configurational? J. Management. and Governance, 11(2), 151-

163.

[15]O’Mahony, S. 2007. The governance of open source initiatives: what does it mean to be

community managed? J. Management and Governance, 11(2), 139-150.

[16]O' Mahony, S. and Ferraro, F. 2007. The Emergence of Governance in an Open Source

Community, Academy of Management J., 50(5), 1079-1106.

[17]Ovaska, P., Rossi, M., and Marttiin, P. 2003. Architecture as a Coordination Tool in

Multi-Site Software Development. Software Process—Improvement and Practice, 8(4),

233-247.

[18]Scacchi, W. 2007b. Free/Open Source Software Development: Recent Research Results

and Emerging Opportunities, Proc. European Software Engineering Conference and

ACM SIGSOFT Symposium on the Foundations of Software Engineering, Dubrovnik,

Croatia, 459-468, September.

[19]Schmidt, K., and Simone, C. 1996. Coordination Mechanisms: Towards a Conceptual

Foundation of CSCW System Design. Computer Supported Cooperative Work, 5(2-

3),155-200.

[20]Simone, C. and Mark, G. 1999. Interoperability as a Means of Articulation Work, Proc.

Intern. Joint Conf. on Work Activities Coordination and Collaboration, San Francisco,

CA, 39-48, ACM Press.

[21]Strauss, A. 1988. The Articulation of Project Work: An Organizational Process. The

Sociological Quarterly, 29(2), 163-178.

[22]Shah, S.K. 2006. Motivation, governance and the viability of hybrid forms in open source

software development, Management Science, 52(7), 1000-1014.

[23]NetBeans Issuezilla Issue Repository, available online at

http://www.netbeans.org/community/issues.html , last accessed 28 November 2009.

[24]NetBeans Community Guidelines, available online at

http://www.netbeans.org/community/guidelines, last accessed 27 November 2009

[25]Workshop Summary: Software Development Governance 2008, available online at

http://www.cs.technion.ac.il/~yael/SDG2008/, last accessed 20 December 2008

http://www.cs.technion.ac.il/~yael/SDG2008/

	ABSTRACT
	1. Introduction and Overview
	2. Analytical Levels and Elements for Understanding Governance in OSS Projects
	3. Micro-Level Analysis of OSS Governance Issues
	4. Meso-Level Analysis of OSS Governance Issues
	4.1. Collaboration
	4.1.1. Policies and Guidelines
	4.1.2. Separation of Concerns: an Architectural Strategy for Collaborative Success

	4.2. Leadership and Control
	4.2.1. Transparency in the Decision Making Process
	4.2.2. Consent in the Decision Making Process

	4.3. Conflict Resolution

	5. Macro-Level Analysis of OSS Governance Issues
	5.1. Coordination
	5.2. Leadership and Control
	5.3. Conflict Resolution

	6. Discussion
	7. Conclusions
	8. Acknowledgments
	9. References

