N

N

Practical Schemes for Privacy and Security Enhanced
RFID

Jaap-Henk Hoepman, Rieks Joosten

» To cite this version:

Jaap-Henk Hoepman, Rieks Joosten. Practical Schemes for Privacy and Security Enhanced RFID. 4th
IFIP WG 11.2 International Workshop on Information Security Theory and Practices: Security and
Privacy of Pervasive Systems and Smart Devices (WISTP), Apr 2010, Passau, Germany. pp.138-153,
10.1007/978-3-642-12368-9__10 . hal-01059139

HAL Id: hal-01059139
https://inria.hal.science/hal-01059139
Submitted on 29 Aug 2014

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://inria.hal.science/hal-01059139
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Practical Schemes For

Privacy & Security Enhanced RFID
(extended abstract)

Jaap-Henk Hoepman!? and Rieks Joosten!

1 TNO Information and Communication Technology
jaap-henk.hoepman@tno.nl,rieks. joosten@tno.nl
2 Radboud University Nijmegen
jhh@cs.ru.nl

Abstract. Proper privacy protection in RFID systems is important.
However, many of the schemes known are impractical, either because
they use hash functions instead of the more hardware efficient symmetric
encryption schemes as a efficient cryptographic primitive, or because they
incur a rather costly key search time penalty at the reader. Moreover,
they do not allow for dynamic, fine-grained access control to the tag that
cater for more complex usage scenarios.

In this paper we propose a model and corresponding privacy friendly pro-
tocols for efficient and fine-grained management of access permissions to
tags. In particular we propose an efficient mutual authentication protocol
between a tag and a reader that achieves a reasonable level of privacy,
using only symmetric key cryptography on the tag, while not requiring
a costly key-search algorithm at the reader side. Moreover, our protocol
is able to recover from stolen readers.

1 Introduction

Radio Frequency Identification (RFID) is a technology that allows to wirelessly
identify and collect data about a particular physical object from a relatively
short distance. The data is stored on so-called tags attached to the object, and is
collected using so-called readers. RFID tags can be very small, can be attached
invisibly to almost anything, and can transmit potentially unique identifying
information. Therefore, proper privacy protection within RFID based systems is
of paramount importance [11, 17].

Yet RFID is also an enabler for the vision of an Internet-of-Things where the
physical and the virtual become interconnected in one single network. This will
spark all kinds of applications beyond our current imagination. Unfortunately,
the current trend in RFID related policy aims to mandate a kill-switch on all
RFID tagsthat will silence such a tag forever once it leaves the shop. Such a kill-
switch is a very coarse, all-or-nothing approach to protecting privacy. It would
be far better to develop an approach that allows the user to have fine grained and
dynamic control over who can access his tags, and when. The research reported
on in this paper takes a step into that direction.

2 Jaap-Henk Hoepman and Rieks Joosten

1.1 State of the art

Because of the privacy risk associated with the large scale use of RFID tags, many
proposals exist to provide a certain level of privacy protection for a particular
application of RFID. We give a brief overview of the state of the art, focusing
on authentication and access control. For details we refer to the full paper [14],
to Juels [17] (and the excellent bibliography® maintained by Gildas Avoine) for
a much more extensive survey of proposed solutions, and [19] for a more formal
analysis of the privacy properties actually achieved by some of the proposed
authentication protocols.

Early proposals use relabelling of tag identifiers [24], or re-encryption tech-
niques [18, 2, 12] that randomly encrypt the identifier from time to time, so
that it can only be recovered by authorised readers, while being untraceable for
others.

Another approach is to implement some form of authentication between tag
and reader, and to allow only authorised tags to retrieve the tag identifier. In a
public key setting this would be easy, but RFID tags are generally considered to
be too resource poor to accommodate for that. Therefore, several identification
and authentication protocols using hash functions or symmetric key cryptogra-
phy have been proposed [29, 9]. In particular, Dimitriou [3] presents a technique
for achieving forward privacy in tags. All readers should be on line, connected
with one central database, so they can be synchronised and the response of a
tag can be looked up immediately in the database.

In a symmetric key setting the reader cannot know the identifier of the tag a
priori, or obtain the identifier of the tag at the start of the protocol because of
privacy concerns. One can give all readers and tags the same symmetric key, but
this has the obvious drawback that once the key of one tag is stolen, the whole
system is corrupted. To increase security, tags can be given separate keys, but
then the reader must search the right key to use for a particular tag. The core
challenge is therefore to provide, possibly efficient, trade offs and solutions for
key search and key management. Molnar and Wagner [20] propose a tree-based
key hierarchy to achieve such a trade-off. They also introduce the concept of
delegation that allows a tag owner to enable another party to access a tag over
some period of time. In another approach, Avoine, Dysli, and Oechslin [3] show
how a time-memory trade off can be exploited to make the search for the key to
use more efficient. We note that none of these systems are practical for RFID
systems where millions of tags possess unique secret keys.

Spiekermann et al. [25] observe that although there are many protocols and
proposals for limiting access to RFID tags (either by killing them completely
or by requiring the reader to authenticate), few systems have been proposed
that allow effective and fine grained control over access permissions. The RFID
Guardian [23] is a notable exception. The main idea is to jam all reader to tag
communication, except for requests that satisfy a pre-defined privacy rule.

We base our work on (relatively) new insights regarding the amount of hard-
ware required to implement symmetric key cryptosystems as compared to hash

3 www.avoine.net/rfid/

www.avoine.net/rfid/

Practical Schemes For Privacy & Security Enhanced RFID 3

functions [22], which shows that symmetric cryptography is the preferred choice
for lower cost tags.

1.2 Owur contribution

Our contribution is to propose a model and corresponding protocols that al-
low effective, efficient and fine grained control over access permissions for RFID
tags, that respect the privacy of the users. The model is enforced by the tags
themselves. The protocols use authentication as a basic component, and we pro-
pose a novel combination of (universal) re-encryption [18, 12] with symmetric
cryptography based authentication [16] to obtain a reasonable level of privacy
protection without using public-key cryptography on the tag, and without the
need for a time consuming key-search algorithm. Although such key-search algo-
rithms are highly popular in the research community because of their superior
privacy properties, we believe they are unreasonable for large scale applications
that may involve millions of tags (and hence keys). Finally, our protocols are re-
sistant to stolen reader attacks, using techniques from [4]. A detailed description
of the properties of our authentication protocol is presented in Sect. 4.

The model is loosely based on the ”Resurrecting Duckling” paradigm of An-
derson and Stajano [27, 26]. Our model is general enough to capture several
RFID use case scenarios, like supply chain management, ticketing and ambient
home intelligence. See the full paper [14] for details. The essence of the model is
that a potentially dynamic system of access permissions is defined. We generalise
the concept of an RFID tag, and view such a tag as a container of several data
objects on which a reader wishes to execute certain functions. This extends the
notion of an RFID tag containing just a unique identifier to slightly smarter data
container. We believe that labelling a physical object with a unique identifier on
an RFID tag, and storing all relevant data on the object in a central database
is going to prove too limitative in the future. For privacy reasons it is better to
require physical proximity to read the data on the tag instead of having that
data available in a database all the time. This research is related to the PEARL?*
project.

The paper is structured as follows. In Sect. 2 we present our system model.
We then continue to implement this model using data structures (Sect. 3), an
authentication and session key establishment protocol (Sect. 4) and subsequent
protocols (Sect. 5). The security proofs appear in Sect. 6 and we present some
conclusions and further research in Sect. 7. The scenarios on which the model is
based, and an analysis of the mapping of the system model on the use cases are
omitted due to space constraints but can be found in the full paper [14].

2 System model

The system model describes the different entities in the system, their mutual
relationships, and the operations that they can perform on each other.

4 WWW.pearl-project.org

www.pearl-project.org

4 Jaap-Henk Hoepman and Rieks Joosten

2.1 Notation

We use k to denote a symmetric key, possibly sub-scripted to denote its owner,
and use s to denote a symmetric session key. We use PK for a public key and
sk for the corresponding private key. Hash functions are denoted by h(-). We
write @ for the exclusive-or operation, and ; for concatenation of bit strings.
{m} denotes the encryption of message m with symmetric key k using some
symmetric cipher, typically AES. [m], denotes a message authentication code
(MAC) for message m derived from a symmetric cipher (for instance CMAC
[21, 6]) using key k. Finally, [{m}]|r denotes the authenticated encryption of m
with key k, for instance by appending the MAC of the ciphertext [5].

2.2 Tags and readers

A tag t is a piece of hardware that contains data. At the very minimum, tags
store a bit string that can be read and sometimes written. Usually, tags store
several values that can be grouped together as tuples because of their logical use.
More complex, smart card like tags, contain ISO 7816 [15] like file structures.
We assume that for the anti-collision protocol random identifiers are used (or
else all bets to achieve some level of privacy are off).

The system model follows the object oriented (OO) metaphor, so that tags
are said to contain objects, each of which is a group of bit strings whose structure
is defined by the class that it instantiates. For every class, each tag contains at
most one instantiating object. Every class defines a set of methods, each of which
specifies a kind of operation that may take place on objects that instantiate that
class. Simple methods specify how to read or perhaps write values in a tuple of
a certain type stored on a particular tag. More complex cases methods might
invalidate a ticket on a tag, or increase an electronic purse balance. Every method
is defined in precisely one class.

Every tag always contains one instance {2 of the tag management class, ini-
tially with default settings. The tag management class implements functions to
manage tag access and ownership. This allows us to implement tag and class
management operations in a similar way as methods on ordinary objects, thus
simplifying the implementation. Details are provided in Sect. 5.

We assume readers are at least on-line some of the time to obtain fresh data
and keys from the central back office.

2.3 Domains and Principals

We use the term domain to refer to a (legal) entity that is capable of bearing
responsibilities. Thus, companies, organisations and governments are considered
to be domains, as well as individual (adult) persons. We use the term principal,
or actor, to refer to a resource (e.g. a person, or a running application within
a computer) that is capable of acting under the responsibility of a domain. We
assume that at any particular point in time d acts on behalf of precisely one
domain D. Thus, if a principal d acts on behalf of a domain D at a given point

Practical Schemes For Privacy & Security Enhanced RFID 5

in time, then D is responsible for everything that d does at that time. We use
D to denote the set of all domains.

2.4 Ownership

We use the term owner(ship) to refer to the responsibilities associated with con-
trolling tags, objects, etc. Since responsibilities are born by domains, ownership
can only be assigned to domains. Ownership can be transferred by the owning
domain to another (accepting) domain.

Thus, the tag owner T for a tag t is a domain that bears the responsibility for
controlling access to t, i.e. for issuing and revoking the associated permissions.
Also, it controls the permissions associated with other tag related functionality,
such as the creation of objects or the transferal of tag ownership. We use 7 C D
to denote the set of tag owners. We write ¢ € T' to indicate that tag ¢ is owned
by T.

The class owner is responsible for controlling access to objects that instan-
tiate this class, i.e. for issuing and revoking permissions for executing methods
defined by that class. We write ¢ € C' to mean that class ¢ is owned by domain
C' (i.e. its class owner).

Note that if a class owner C' owns a class ¢, then (initially) it also owns every
object o € ¢. Thus, object ownership is (initially) implied by class ownership.
However, ownership of individual objects may be transferred to other domains
later on. If that happens, the class owner is not necessarily the owner of all
objects of that class.

2.5 Permissions

Every permission, i.e. the right to access a tag or the right to execute a method
on an object, is issued by the domain that owns the tag or the object, to any
domain of its choosing. One of our main contributions is the distinction we make
between accessing (i.e. communicating with) tags and accessing (i.e. executing
methods on) objects on a tag. A consequence of this distinction is that it requires
two rather than one permission to access an object on a tag: one permission is
needed for accessing the tag on which the object is stored (which is granted by
the tag owner), and the other permission is required to execute the appropriate
method on that object (which is granted by the object owner).

2.6 Operations on a Tag

The most basic operation the model must support is calling a method on an
object of a certain class stored on a particular tag. For this, two permissions are
required: first, the domain must be allowed to access the tag, and secondly the
domain must be allowed to execute the method on (the class of) the object. Note
that access to a method is initially granted at the class level. So access rights
for a particular method initially apply to all objects of that class.

6 Jaap-Henk Hoepman and Rieks Joosten

The creation of permissions is done off-tag, as is the distribution thereof.
Tag ownership is controlled through the functions TakeTagOwnership, Trans-
ferTagOwnership and RelinquishTagOwnership. Tag access is controlled
through the following functions: GrantTagAccess and RevokeTagAccess.
These functions are only executable by the tag owner.

Object management is controlled through the following functions: Instal-
10bject, UpdateObject, UpdateClassKey and DeleteObject. For more
information we refer to Sect. 5 and the full paper [14]

3 Data structures

In this section we describe the data structures stored by the tags, and the keys
and permissions used by the domains to access the data on a tag. In the next
section we describe the implementations of the operations that can be performed
on a tag.

3.1 Keys

To implement permissions, the system uses the the following types of keys. Some
keys (the domain key pairs PKp, skp) are asymmetric keys, the other keys are
symmetric keys.

Tag access keys k,. Access to tags is controlled using tag access keys k.
These keys are unique to a tag, and derived from the tag identifier ¢ us-
ing a master access key k4 through key diversification [1] by ko, = {t}x,-

Master access keys k4. Each domain has a master access key k4. Readers in
a domain use this master access key ka to derive tag access keys from tag
identifiers. Each tag thus stores, for each domain that is allowed to access
it, a different tag access key.

Domain key pairs PKp, skp. Fach domain keeps a unique ElGamal pub-
lic/private domain key pair PKp, skp. These keys are used in the authen-
tication protocol to preserve privacy of the tag identifier ¢t. To thwart stolen
reader attacks, readers get a new pair of keys every once in a while. These
keys are stored in the array EJ|.

Class keys k.. For each class there exists a unique class key k.. The class key
is used to encode access permissions to the class methods. A tag stores, for
each object, the corresponding class key to verify such permissions. Class
owners know all the class keys of the classes they own. Changing the class
key of an individual object can be utilised to transfer ownership of that
particular object. Conceptually, however, this makes the object member of
another class (albeit with the same structure and methods as the class it
originally was a member of).

Practical Schemes For Privacy & Security Enhanced RFID 7

3.2 Other data stored on the tag

A tag t also performs a bit of bookkeeping. Firstly, it records a time stamp now,
that approximates the current date and time (see below), initially —oco. Tags
also store several objects, each of a class ¢ together with the key k.. Also, a tag
t keeps an access set A; that stores, for each domain D that is granted access to
the tag, the following three items.

— An encrypted tag identifier id, equal to the ElGamal encryption (¢- PK, g*)

of the tag identifier ¢.

The epoch e in which the encrypted tag identifier was created (for explana-

tion see Sect. 4).

— The diversified tag access key k,, which equals {t}, for the master key k4
used by domain D.

— A boolean flag indicating whether this domain is the owner of the tag.

We interpret the access set as a dictionary indexed by domains (as a domain
can have at most one such tuple in the access set), and write A¢[D] = (id, kq, b).
There is at most one domain that is the owner of the tag. We write owner; for
that domain (which equals L if the tag is not owned by a domain). Initially,
At == @

Finally, the tag stores the current session key s, which initially and in between
sessions equals a default value (denoted L, but which actually is a valid key), and
which is set to a certain value as the result of a successful mutual authentication
(in which case the authenticated reader holds the same session key). It also
stores the domain of the reader that was authenticated in I" (which equals L in
between sessions). We usually omit the subscript from now, owner and A.

3.3 Permissions

To grant a domain D access to a method f on an object of class ¢ up to time
A, the class owner C' generates a permission token ke s p A = {f, D, A}, and
sends this to the domain D. This permission token expires as soon as the current
time exceeds A. Tags use now as their estimate of the current time to verify this.
They do not need to have their own clock, and this estimate does not have to
be synchronised with other tags. This is updated after each successful call of a
method on the tag (which includes the current time as asserted by the caller).
It is also set to the current time when the first domain takes ownership of the

tag. A similar method is also used by the European RFID passports [7, 13].

4 Mutual authentication and establishing a session key

A basic step underlying the protocols that implement the operations that access
a tag, is to mutually authenticate a tag and a reader, and to establish a session
key among them.

Below we present a protocol that is efficient for both the reader and the
tag. In principle it combines elements of three different known authentication

8 Jaap-Henk Hoepman and Rieks Joosten

protocols to strike a balance between tag and reader efficiency, achieve a robust-
ness against a reasonably large class of adversaries, and achieve a certain level
of privacy as well. In fact it combines a standard, ISO/TEC 9798-2 [16] based
symmetric key authentication protocol, with (universal) re-encryption [18, 12]
to avoid the costly key search, and a counter based approach to invalidate keys
from stolen readers [4]. To further enhance privacy, users may perform a separate
re-encryption of all identifiers on a tag at any time.
To be precise, the protocol achieves the following properties

mutual authentication The reader and the tag are mutually authenticated.

soft privacy Tags can only be traced in between two successful re-encryptions
(including the re-encryption performed during an authentication). Except
for the reader performing the re-encryption, no other reader or eavesdropper
can link the presence of the tag after the re-encryption with an observation
of this tag before the re-encryption.

resilience to tag compromise Tags do not contain global secrets. Hence a
tag compromise does not affect any other tags in the system.

resilience to reader compromise Stolen readers (or otherwise compromised
readers) will not be able to recognise or access tags, once those tags have
been in contact with another valid reader after the compromise [4]. A similar
property is achieved by the European biometric passports [7, 13].

reader efficiency The reader performs a constant number of operations.

tag efficiency The tag performs only a constant number of symmetric key cryp-
tography operations.

The protocol we present below explicitly checks the correctness of the re-
sponses, that may contain additional information for that purpose, to positively
authenticate the other party. Another option is to rely on implicit authentica-
tion through the session key that is established as well: if the authentication
fails, both parties will have different values for the session key, and therefore
subsequent protocol steps will fail. Note that in the description of the protocols
we do not explicitly describe the behaviour of a principal if it detects such an
error. Instead we use the convention that if an internal check fails, the principal
continues to send the expected messages at the appropriate times, with the ap-
propriate message format, but with random message content. This is necessary
to preserve privacy, as observed by Juels et al. [19].

Our protocol (see Fig. 1) is an extension of the the ISO/TEC 9798-2 [16]
standard, using diversified keys [1] to avoid sharing keys over many tags. To
compute the diversified tag access key k/, from the master access key ky it
stores, the reader needs to learn the tag identifier ¢. This cannot be sent in the
clear for privacy reasons. The solution is to encrypt the tag identifier ¢ against
the public key of the reader to obtain id, and let the reader re-encrypt [18] that
value with every authentication run. This way the tag does not have to perform
any public key operations. Note that the re-encrypted value is only used as the
new tag identifier after a successful authentication of the reader. This avoids
denial-of-service attacks. Finally, the re-encryption keys stored by the readers
are updated every time a reader is stolen. Every time this happens, a new epoch

Practical Schemes For Privacy & Security Enhanced RFID 9

Reader d € D Tag ¢
_b . D’
(id,e, K, b) :== A[D']
((u,v), (y,2)), e, r e generate random r

verify e < e

(skp, PKp) := E[€'] ; verify y/z°%p =1
t':=u/v*P ; (skp, PKp) = E[¢]
generate random x, x’

v =t PK} modp ;v :=g" modp
y = PK% modp ; 2 := ¢” modp

id' = ((u'7v’), (y’,z’)) i ka 1= {t/}kA

. [{id" ;e 30;835 g
generate session key s and random ¢

decrypt using ki,
into id”,e", 7", q,8, s

AD'] =L
verify r =" now < ¢’
now := 06" ;
A[D'] = (id", e" k., b)
{a’:8} 11
decrypt using k, into ¢”’, 5’ —_— generate session key 5
verify ¢ = ¢” ; return (s ® §,t') return (s’ @ 5, D")

Fig. 1. Authentication and session key agreement.

is started. Stolen readers no longer receive keys for future epochs. Tags that
authenticate successfully, receive a new encrypted identity, encrypted against
the most recent epoch key. This makes it impossible for compromised readers to
track this tag.

At the reader side the protocol returns the tag identifier and the session key to
be used. AuthenticateR(skp, PKp,ka) denotes a call to such an authentication
protocol run in the protocols below. At the tag side, the protocol returns the
session key, as well as the authenticated domain. We write AuthenticateT () for
this call.

4.1 Re-encryption

The protocol uses re-encryption, or rather universal re-encryption [12], as fol-
lows. We use the ElGamal encryption scheme [10] over a cyclic group G of order
q. To be concrete, and to achieve semantic security [28], we choose two primes p
and ¢ such that ¢||(p—1) (i.e., ¢ is a divisor of (p—1)) and choose as G the cyclic
subgroup of Z, with order ¢, and pick a generator g for G. These are global,
system wide, constants.

Each domain has, for each epoch, its own public/private key pair (PKp, skp)
where skp is a random integer between 1 and ¢ — 1, and PKp = ¢**?. The tag
identifier ¢ is encrypted, using ElGamal, as (u,v) = (t - PK$,¢") , where z is a

10 Jaap-Henk Hoepman and Rieks Joosten

random value in [0, ¢ — 1]. To allow re-encryption by readers that do not know
the corresponding private key, each tag stores with each encrypted tag identifier
a corresponding re-encryption factor (y,z) = (PK%,¢*) , where 2’ is a new
random value in [0, ¢ — 1]. Note that this is basically an encryption of the value 1
against the same key. Because ElGamal enjoys the homomorphic property that
the multiplication of the encryption of two ciphertexts equals the encryption of
the multiplication of the corresponding plaintexts, we see that (uy,vz) in fact
equals the encryption of tag identifier ¢. The encrypted identifier now becomes
id = ((u,v), (y, 2)) -

Readers store the key pairs for the epochs in an array F[], storing the keys
for epoch e at Fle]. This array is filled with epoch keys up to and including the
current epoch ¢, and grows in size over time.

To re-encrypt, a reader that knows the corresponding, most recent public
epoch key PKp does the following. It generates new random values a and a’ in
[0,¢ — 1] and computes (u/,v') = (t- PK%,¢%) and (y,2') = (PK%,¢*) and
sends id' = ((u/,v'), (¢, 2')) to the tag. Readers that do not know the current
epoch key can use the re-encryption factor to compute a new encrypted identifier
as follows. Again two random factors a and o’ in [0,¢ — 1] are generated, and
then the reader computes (v/,v') = (u-y*,v - 2%) and (¢/,2") = (y*,2%) and
again sends id" = ((v',v"), (3, 2')) to the tag

To decrypt, one simply verifies that y/2°*> = 1 and computes u/v*?, using
the appropriate epoch key stored in E[]. To avoid the need to search for the right
key, the tag sends, together with is encrypted identifier, the epoch in which it
was last updated®.

5 Protocols

Below we will describe protocols that implement the operations from Sect. 2.6.
We take a rather generic approach. Instead of implementing special protocols for
each of these operations, we in fact model all these operations either as calls on
normal objects (DeleteObject and UpdateObject), or as special methods of
the tag management object 2 (all other operations). That is, we present pseudo-
code for the body of each of these operations as if they were methods of a certain
object, operating on the state of the object and or operating on the state of the
tag. Due to space constraints, we only describe the tag-ownership operations.

5.1 Calling a method

To call a method f on an class ¢, the reader d belonging to domain D and the tag
t first set up a session using the protocol in Fig. 2. If this is successful, the reader
and the tag share the same session key. Both initialise their message sequence
counter (m and n) to 0.

5 This is not an additional privacy concern as the tag will broadcast the same en-
crypted tag identifier anyway, until it is successfully updated (in which instance its
epoch will be set to the most recent epoch, which contains a large number of tags).

Practical Schemes For Privacy & Security Enhanced RFID 11

Reader d€ D Tagt
(s',t'") := AuthenticateR(E|[],ka,¢€) < (s,I") := AuthenticateT()
n:=0 m:=0

Fig. 2. Setting up a session.

Reader d € D Tag t

n;c; f;Aip} g . .
lnicif3 APt decrypt and verify using

sinto n',c, f', A, p
verify now < A’

verify n’ =m

look up object of class ¢
and keep k.

verify p' = {f', I, A"} s

p = ke, g0,

n+1l;x o .
1 N decrypt and verify

using s into n/, x
verify n’ = m + 1

[{m+2;result}] s execute f(F, x)

decrypt and verify using s’

into m’, r
verify m’ =n + 2
n:=n-+3 m:=m-+3

Fig. 3. Calling method f(z) on class ¢ using permission k. s p A valid until A.

The actual method call follows the protocol in Fig. 3. This protocol can
be executed several times in a row, to execute several methods within a single
session. Each message includes the current value of the message counter, and each
message is encrypted and MAC-ed with the session key. The message counters
are incremented with every subsequent message within a session. The receiver
verifies the included message counter to prevent replay attacks.

For each method call, the reader sends the corresponding permission token,
which is verified by the tag using the class key k. of the class whose method is
called. It also verifies whether the permission token is still valid, using its own
estimate of the current time now, and whether the permission token is bound
to the domain that was authenticated in the first phase. Then the reader sends
the method call parameters, and the tag responds with the method result. If the
method is supposed to return no result, a random value is sent instead. Note that
the method is called with the name of the calling domain as the first parameter.

To call a method on an object for which no permission tokens are necessary
(which is the case for some of the methods of the tag management object, see
below), basically the same protocol is used. In this case however, the caller does
not have to send a permission token, and the tag only verifies that the requested
method on that object is indeed callable without permission.

Finally, to close a session, the protocol in Fig. 4 is executed.

12 Jaap-Henk Hoepman and Rieks Joosten

Reader d € D Tag t

t N
[{stor} decrypt and verify using s

s:=_L
=1

Fig. 4. Closing a session.

5.2 Tag ownership functions

The following methods on the tag management object {2 implement transfer
of ownership. To relinquish ownership of a tag, the tag owner can execute the
following method. The functionality of RelinquishTagOwnership may be

extended to include the deletion of all
objects (other than the tag manage-
ment object), and the resetting of in-
formation in the tag management ob-
ject.

RelinquishTagOwnership(caller):
verify owner = caller ;
A :=0 (hence owner = 1) ;
s:= 1.

To become the owner of an unowned tag, a domain calls the following

TakeTagOwnership(caller, D, id, k,): method, where the caller of TakeTag-
verify owner = L ; Ownership from domain D has re-

A[D] := (id, kq, true) : ceived the tag identifier ¢ out-of-band.

He then generates a random x, com-

putes id = (u,v) = (t- PK$,¢") and computes k, = {t}, using its own master

access key k4, before calling the method. Note that this protocol is susceptible

to hijacking and eavesdropping on the new owner’s access key, if the default
session key L is used (which is the case when the tag has no owner).

To transfer ownership of tag ¢ from tag owner T' to domain 7", a new entry
for the new tag owner must be set in A with a new encrypted tag identifier
and a new diversified access key (and in fact all other entries in the access set
need to be deleted). The tag identifier does not change. This process is in fact a
three party protocol that is implemented by two method calls. The first runs as
follows.

TransferTagOwnership(caller): Note that this function can only be ex-
verify owner = caller ; ecuted in sessions of the authentic tag

A =0 (hence owner = L) ; owner. After execution of this func-
tion, the session is not terminated (i.e.
the session key is not reset). While in this state, the tag is shipped to the new
owner T" and the values of the tag identifier id, the session key s and the mes-
sage counter n are sent to 77 out of band. Then, T” calls TakeTagOwnership
(without prior authenticating and hence starting a new session!), thus becoming
the new tag owner (preferably when the old owner is out of reach so it cannot
eavesdrop on the new values sent to the tag).

Practical Schemes For Privacy & Security Enhanced RFID 13

6 Security analysis

We first give a security analysis of the authentication protocol from Sect. 4
against the most important security properties mentioned in that section. We
then analyse the security of the method invocation protocol from Sect. 5.1.

The adversary we consider has full control over the communication medium:
he can block, intercept, duplicate, modify and fabricate arbitrary messages. He
can, however, not create valid MACs for messages if he does not know the key,
and cannot encrypt or decrypt messages for which he does not know the sym-
metric key. The adversary can corrupt arbitrary tags and hence know their full
state including any keys they store. The adversary can also corrupt arbitrary
readers. However, such readers are known to be corrupted and the system is
notified of any such corruption.

Let «y be the security parameter (implicitly defined by the size of G (see 4.1)
and the choice of the size of the symmetric keys).

We first prove the security of the authentication protocol.

Lemma 6.1. Let a call AuthenticateR(skp, PKp,ka) from a reader from do-
main D return (o,t"). Let tag t call AuthenticateT () which returns (o/, D"). Then
oc=0 onlyift =t and D = D’. No other entity not in domain D knows o.

Proof. Consider the protocol in Fig. 1. Suppose o = (s®3') = (s'®3) = o’. Then
the reader accepted the message {¢'; 5}, . Hence k, = {t'}1,, as computed by the
reader equals k[,. As k/, is retrieved from A[D’] and k4 is only known to D this
proves D = D’ Also the tag must have accepted the message {id’; ;7’5 q; 0; s},
using its own key k/. Again for k, = {t'},, we must have k!, = k,. Because only
t holds k, = {t}r, we must have t = ¢'.

To know ¢ one needs to know both s and 5. This requires one to know k,.
Clearly ¢ knows this. Otherwise, it requires one to know k4 (and t). This is only
known to members of D. This proofs the final statement of the lemma. O

Privacy after authentication or full re-encryption is guaranteed by the fol-
lowing lemma.

Lemma 6.2. Lett be a tag, whose tag identifiert for domain D gets re-encrypted
from id to id" (either by authentication or by a full re-encryption). Let id" be
the encrypted tag identifier for domain D of an arbitrary tag t' # t. Then there
exists no adversary (that has no access to the private keys of domain D) with
resources polynomially bounded in ~y that can decide whether id and id” or id’
and id are encrypted tag identifiers of the same tag.

Proof. In [12] it is shown that, given our use of ElGamal over our choice of group
G, there does not exist an adversary with resources polynomially bounded in
that can properly match the re-encryptions of two ciphertexts with the original
input ciphertexts. The adversary linking either id or id” with id’ would trivially
solve this problem too, and hence cannot exist either. O

Resilience to reader compromise is shown by the following lemma.

14 Jaap-Henk Hoepman and Rieks Joosten

Lemma 6.3. A reader from domain D reported stolen in epoch e cannot decide
whether two tags that have successfully authenticated with an unstolen reader
from domain D in epoch €' > e corresponds with a tag observed before.

Proof. At the start of epoch e’, we have ¢ = ¢/, and all readers in domain D that
are not reported stolen receive new epoch keys (skp’, PK’,) that are stored in
Ele]. If a tag authenticates with this reader, according to the protocol, it receives
a new encrypted identifier encrypted with the keys (skp’, PK’,). Let two tags
meet such a reader, obtaining encrypted tag identifiers id/, and id} in exchange
for their old identifiers id, and idy. If subsequently these tags meet a reader
from domain D that was reported stolen in epoch e < €', this reader does not
own the key pair (skp’, PK,) and hence cannot decrypt id,, or id,. Therefore,
by Lemma 6.2, the reader cannot link the encrypted identifiers id, and id,. O

Finally, we show security of the method invocation protocol.

Lemma 6.4. A tagt only executes a method [of class ¢ with class key k. if a
reader in domain D with

— Ay[D] # L when it starts the session, and
— permission token k. pp A = {f, D, A}y, with A > now, (when the permis-
sion is verified)

issued the command to the execute this method in the session it started. More-
over, the tag will do so at most once.

Proof. Checking the protocol, we see that a tag ¢ executes method f on class ¢
with class key k. when

— it receives a message correctly encrypted and mac-ed with its session key
s, containing the parameters and the expected message counter m + 1, and
before that

— has received a message correctly encrypted and mac-ed with its session key
s, containing f, ¢, A and a permission token k. p A = {f, D, A}y, with
A > now;, and the expected message counter m.

The authentication protocol guarantees (see Lemma 6.1) that only if D is a
member of A; when starting a session, the reader and the tag share the same
session key s. Therefore, in the current session the tag only accepts messages
constructed by such a reader in domain D. This proves that it must have issued
the command to the execute this method in the session it started, and also that
it held the appropriate permission token. Moreover, due to the use of message
counters, the current session only accepts a particular message encrypted for this
session at most once. This proofs the final statement of the lemma. ad

7 Concluding remarks and further research

Although our model accommodates a multitude of use cases, in the course of this
research we have identified several capabilities that our current implementation

Practical Schemes For Privacy & Security Enhanced RFID 15

lacks. Access to tags and objects is bound to specific domains, and a domain with
certain permissions cannot delegate them to another domain. Although access to
a tag can be revoked instantaneously, permission tokens to access objects cannot
be revoked (although their validity can be constrained by using short validity
periods). Domains are granted access to specific tags one by one by the respective
tag owners. Permission tokens to call a method on an object are however not
tag specific (unless each object of the same class is given a separate class (or
rather object) key. The distinction between a permission to access a tag and a
permission to call a method on an object is confusing and perhaps unfortunate.

Finally, to re-encrypt an identifier, one needs to own the corresponding access
key. This severely limits the options for owners to re-encrypt their tags. On the
other hand, not requiring such an access key puts tags wide open to denial-of-
service attacks that feed them with bogus identifiers.

We welcome discussion and feedback on these issues.

References

[1] ANDERSON, R. J., AND BEZUIDENHOUDT, S. J. On the reliability of electronic
payment systems. IEEE Trans. on Softw. Eng. 22, 5 (May 1996), 294-301.

[2] AvOINE, G. Privacy ussues in RFID banknotes protection schemes. In 6th
CARDIS (Toulouse, France, Sept. 2004), pp. 43-48.

[3] AvoINE, G., DysLl, E., AND OECHSLIN, P. Reducing time complexity in rfid
systems. In Selected Areas in Cryptography (2005), B. Preneel and S. E. Tavares,
Eds., vol. 3897 of Lecture Notes in Computer Science, Springer, pp. 291-306.

[4] AvoIiNE, G., LAurADOUX, C., AND MARTIN, T. When compromised readers
meet RFID. In Workshop on RFID Security (RFIDsec) (Leuven, Belgium, June
30-July 2 2009), pp. 32-48.

[5] BELLARE, M., AND NAMPREMPRE, C. Authenticated encryption: Relations
among notions and analysis of the generic composition paradigm. In ASTACRYPT
(2000), T. Okamoto, Ed., LNCS 1976, Springer, pp. 531-545.

[6] BLACK, J., AND Rocaway, P. CBC MACs for arbitrary-length messages: The
three-key constructions. In CRYPTO (2000), M. Bellare, Ed., LNCS 1880,
Springer, pp. 197-215.

[7] BSI. Advanced security mechanisms for machine readable travel documents —
extended access control (eac). Tech. Rep. TR~-03110, BSI, Bonn, Germany, 2006.

[8] DimrTrIOU, T. A lightweight RFID protocol to protect against traceability and
cloning attacks. In IEEE International Conference on Security and Privacy for
Emerging Areas in Communication Networks (SECURECOMM 2005) (2005).

[9] ENGBERG, S. J., HARNING, M. B., AND JENSEN, C. D. Zero-knowledge device
authentication: Privacy & security enhanced rfid preserving business value and
consumer convenience. In 2nd Ann. Conf. on Privacy, Security and Trust (Fred-
ericton, New Brunswick, Canada, Oct. 13-15 2004), pp. 89-101.

[10] GamaL, T. E. A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE Trans. on Inf. Theory 31, 4 (1985), 469-472.

[11] GARFINKEL, S. L., JUELS, A., AND PAappU, R. RFID privacy: An overview of
problems and proposed solutions. IEEE Security € Privacy (May 2005), 34-43.

[12] GOLLE, P., JAKOBSSON, M., JUELS, A., AND SYVERSON, P. F. Universal re-
encryption for mixnets. In RSA Conf. (San Fransisco, CA, USA, Feb. 23-27
2004), LNCS 2964, pp. 163-178.

16

[13]

[14]
[15]

[16]

[17]

[18]

[19]

[20]

21]

22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Jaap-Henk Hoepman and Rieks Joosten

HoepmaN, J.-H., HUBBERS, E., JacoBs, B., O0sTDIJK, M., AND WICH-
ERS SCHREUR, R. Crossing borders: Security and privacy issues of the euro-
pean e-passport. In 1st IWSEC (Kyoto, Japan, Oct. 23-24 2006), H. Yoshiura,
K. Sakurai, K. Rannenberg, Y. Murayama, and S. Kawamura, Eds., LNCS 4266,
Springer, pp. 152-167.

HoepMmAN, J.-H., AND JOOSTEN, R. Practical schemes for privacy & security
enhanced RFID. CoRR abs/0909.1257 (2009).

ISO 7816. ISO/IEC 7816 Identification cards — Integrated circuit(s) cards with
contacts. Tech. rep., ISO JTC 1/SC 17.

ISO 9798-2. ISO/IEC 9798 Information technology — Security techniques — Entity
authentication — Part 2: Mechanisms using symmetric encipherment algorithms.
Tech. rep., ISO JTC 1/SC 27.

JUELS, A. RFID security and privacy: A research survey. IEEE Journal on
Selected Areas in Communications 24, 2 (2006), 381-394.

JUELS, A., AND PAarpPU, R. Squealing euros: Privacy protection in RFID-enabled
banknotes. In 7th Int. Conf. Fin. Crypt. (Guadeloupe, French West Indies, Jan.
27-30 2003), R. N. Wright, Ed., LNCS 2742, Springer, pp. 103-121.

JUELS, A., AND WEIS, S. Defining strong privacy for RFID. In 5th Ann. IEEE
Int. Cont. on Pervasive Computing and Communications Workshops — Pervasive
RFID/NFC Technology and Applications (PerTec) (2007), pp. 342-347.
MOLNAR, D., AND WAGNER, D. Privacy and security in library rfid: issues, prac-
tices, and architectures. In ACM Conference on Computer and Communications
Security (Washington D.C., USA, Oct. 25-29 2004), V. Atluri, B. Pfitzmann, and
P. D. McDaniel, Eds., ACM, pp. 210-219.

NIST 800-38B. Recommendation for block cipher modes of operation: The
CMAC mode for authentication. Tech. Rep. NIST Special Publication 800-38B,
National Institute of Standards and Technology, U.S. Department of Commerce,
May 2005.

OswALD, E. Suggested algorithms for light-weight cryptography. Tech. rep.,
ECRYPT, Sept. 2006.

RieBACK, M. R., GAYDADJIEV, G., CRrISPO, B., HOFMAN, R. F. H., AND TANEN-
BAUM, A. S. A platform for rfid security and privacy administration. In LISA
(2006), USENIX, pp. 89-102.

SARMA, S. E., WEIS, S. A., AND ENGELS, D. W. Rfid systems, security & privacy
implications (white paper). Tech. Rep. MIT-AUTOID-WH-014, Auto-ID Center,
MIT, Cambridge, MA, USA, 2002.

SPIEKERMANN, S., AND EVDOKIMOV, S. Critical rfid privacy-enhancing technolo-
gies. IEEE Security € Privacy 11, 2 (Mar.—Apr. 2009), 56-62.

STAJANO, F. The resurrecting duckling - what next? In 8th Security Proto-
cols Workshop (Cambridge, UK, Apr. 3-5 2000), B. Christianson, B. Crispo, and
M. Roe, Eds., LNCS 2133, Springer, pp. 204-214.

STAJANO, F., AND ANDERSON, R. The resurrecting duckling: Security issues
for ad-hoc wireless networks. In Security Procotols, 7th Int. Workshop (1999),
B. Christianson, B. Crispo, and M. Roe, Eds., LNCS, pp. 172-194.

Tsiounts, Y., AND YUNG, M. On the security of elgamal based encryption.
In Public Key Cryptography (1998), H. Imai and Y. Zheng, Eds., LNCS 1431,
Springer, pp. 117-134.

WEIS, S. A., SARMA, S. E., RIvEsT, R. L., AND ENGELS, D. W. Security and
privacy aspects of low-cost radio frequency identification systems. In 1st SPC
(Boppard, Germany, Mar. 12-14 2003), D. Hutter, G. Miiller, W. Stephan, and
M. Ullmann, Eds., LNCS 2802, Springer, pp. 201-212.

	Practical Schemes For Privacy & Security Enhanced RFID (extended abstract)
	Jaap-Henk Hoepman and Rieks Joosten
	Introduction
	State of the art
	Our contribution

	System model
	Notation
	Tags and readers
	Domains and Principals
	Ownership
	Permissions
	Operations on a Tag

	Data structures
	Keys
	Other data stored on the tag
	Permissions

	Mutual authentication and establishing a session key
	Re-encryption

	Protocols
	Calling a method
	Tag ownership functions

	Security analysis
	Concluding remarks and further research

