R. Beatson and Z. Ziegler, Monotonicity Preserving Surface Interpolation, SIAM Journal on Numerical Analysis, vol.22, issue.2, pp.401-411, 1985.
DOI : 10.1137/0722024

R. Carlson and F. Fritsch, An Algorithm for Monotone Piecewise Bicubic Interpolation, SIAM Journal on Numerical Analysis, vol.26, issue.1, pp.230-238, 1989.
DOI : 10.1137/0726013

J. Carnicer, M. Floater, and J. Peña, Linear convexity conditions for rectangular and triangular Bernstein-B??zier surfaces, Computer Aided Geometric Design, vol.15, issue.1, pp.27-38, 1997.
DOI : 10.1016/S0167-8396(97)81783-9

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. S. Cavaretta, J. Sharma, and A. , Variation diminishing properties and convexity for the tensor product Bernstein operator, Functional Analysis and Operator Theory, pp.18-32, 1007.
DOI : 10.1016/0021-9045(87)90002-5

J. Delgado and J. M. Pè-oa, Are rational B??zier surfaces monotonicity preserving?, Computer Aided Geometric Design, vol.24, issue.5, pp.303-306, 2007.
DOI : 10.1016/j.cagd.2007.03.006

H. Edelsbrunner, J. Harer, and A. Zomorodian, Hierarchical Morse--Smale Complexes for Piecewise Linear 2-Manifolds, Discrete and Computational Geometry, vol.30, issue.1, pp.87-107, 2003.
DOI : 10.1007/s00454-003-2926-5

G. E. Farin, Triangular Bernstein-B??zier patches, Computer Aided Geometric Design, vol.3, issue.2, pp.83-127, 1986.
DOI : 10.1016/0167-8396(86)90016-6

G. E. Farin, Curves and Surfaces for Computer-Aided Geometric Design: A Practical Code, 1996.

M. Floater, C. Beccari, T. Cashman, and L. Romani, A smoothness criterion for monotonicity-preserving subdivision, Advances in Computational Mathematics, vol.44, issue.1, pp.193-204, 2013.
DOI : 10.1007/s10444-012-9275-y

M. Floater and J. Peña, Tensor-product monotonicity preservation, Advances in Computational Mathematics, vol.934, pp.353-3621018906027191, 1998.

M. S. Floater and J. M. Peña, Monotonicity preservation on triangles, Mathematics of Computation, vol.69, issue.232, pp.1505-1519, 2000.
DOI : 10.1090/S0025-5718-99-01176-X

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

L. Han and L. L. Schumaker, Fitting Monotone Surfaces to Scattered Data Using C1 Piecewise Cubics, SIAM Journal on Numerical Analysis, vol.34, issue.2, pp.569-585, 1997.
DOI : 10.1137/S0036142994268582

B. Jüttler, Surface fitting using convex tensor-product splines, Journal of Computational and Applied Mathematics, vol.84, issue.1, pp.23-44, 1997.
DOI : 10.1016/S0377-0427(97)00100-3

F. Kuijt and R. Van-damme, Monotonicity preserving interpolatory subdivision schemes, Journal of Computational and Applied Mathematics, vol.101, issue.1-2, pp.203-229, 1999.
DOI : 10.1016/S0377-0427(98)00220-9

URL : http://doi.org/10.1016/s0377-0427(98)00220-9

E. Mainar and J. M. Peña, Monotonicity preserving representations of non-polynomial surfaces, Journal of Computational and Applied Mathematics, vol.233, issue.9, pp.2161-2169, 2010.
DOI : 10.1016/j.cam.2009.09.045

D. F. Mcallister, E. Passow, and J. A. Roulier, Algorithms for computing shape preserving spline interpolations to data, Mathematics of Computation, vol.31, issue.139, pp.717-725, 1977.
DOI : 10.1090/S0025-5718-1977-0448805-0

S. Smale, On Gradient Dynamical Systems, The Annals of Mathematics, vol.74, issue.1, pp.199-206, 1961.
DOI : 10.2307/1970311

K. Strøm, On convolutions of B-splines, Journal of Computational and Applied Mathematics, vol.55, issue.1, pp.1-290377, 1994.
DOI : 10.1016/0377-0427(94)90182-1

K. Willemans and P. Dierckx, Smoothing scattered data with a monotone Powell-Sabin spline surface, Numerical Algorithms, vol.27, issue.1, pp.215-231, 1996.
DOI : 10.1007/BF02141749