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Summary We study existence of time-periodic oscillations in a ch#ficoupled impact oscillators, for rigid impacts withoueegy
dissipation. We formulate the search of periodic solutiassa boundary value problem incorporating unilateral cairgs. This
problem is solved numerically and different solution bitae® corresponding to nonlinear localized modes (bregtlaeds normal
modes are computed.

Understanding the dynamics of nonlinear lattices (i.e gdametworks of coupled nonlinear oscillators) is a problem
of fundamental importance in mechanics, condensed matigsiqs or biology. One of the major issues concerns the
mathematical analysis and numerical computation of speleiases of nonlinear time-periodic oscillations thataorige

the dynamics in many situations. In particular, spatiaklyipdic waves (standing waves or periodic traveling waves)
and spatially localized waves (breathers) are the objeicitensive research [9, 4]. In this context, many theorétiod
numerical works have focused on smooth nonlinear systeinsreas relatively few mathematical results are available
for waves in nonsmooth infinite lattices [5, 6, 7]. Develaptheoretical and numerical tools for the analysis of nardin
waves in nonsmooth systems is extremely important for agfiins, in particular in the context of impact mechanics
where unilateral contacts and friction come into play. Higtdiscrete lattice models are frequently encountered i
this context, in particular for the modeling of waves in mhddy mechanical systems (e.g. granular media) or in finite
element models of continuum systems. A classical exanipgtriating the latter case concerns thin oscillating maitz
structures (a string under tension or a clamped beam) dingadayid obstacles [8, 1]. Such a structure can be desdribe
by a one-dimensional finite-element model involving a largmber of degrees of freedom. The contact force between the
string/beam and a rigid obstacle is either measure-vafoedgbounds with velocity jumps at contact times) or sdtigd

(if a wrapping of the string on the obstacle occurs). Althoagnlinear periodic waves are observed in experiments [2],
relatively little is known from a theoretical point of viewndheir existence and stability. Existence results havenbee
derived in particular cases, for a continuum string modéhwbint-mass or plane obstacle ([3] and references therein
In addition, the existence and stability of time-periodiedthers (spatially localized oscillations) has beenyaeal for
discrete linear chains with a single node undergoing rigigdacts, both for conservative systems [5] and forced system
with dissipative impacts [6].

In this work, we study the existence and stability of timeipeic oscillations in a chain of linearly coupled impact
oscillators reminiscent of a model analyzed in [5], for diginpacts without energy dissipation. We introduce a numer-
ical method allowing to compute branches of time-periodicgonswhen an arbitrary number of nodes undergo rigid
impacts For this purpose, we reformulate the search of periodigtgnls as a boundary value problem incorporating
unilateral constraints. We illustrate this numerical agah by computing some families of nonlinear spatially lizeal
modes (breathers) and extended modes.

We consider an infinite chain of impact ocillators with pwsis described by an infinite vectg(t) € ¢ (Z) (the space

of bounded sequences @). The dynamics is described by the following complementytagstem

Un +Yn =Y (AY)n = An, nE€Z, 1)
0<AL(y+1)>0, 2)
if yn(ti) <0 andyn(t) =-1 thenyn(tJr) = _yn(ti)a (3)

where(Ay), = yn+1 — 2 yn + yn—1 defines a discrete Laplacian operafbdenotes the constant sequence with all terms
equal to unity andy > 0 is a parameter. Non-dissipative impacts occunf@) = —1 and give rise to impulsive reaction
forces\(t). We look forT-periodic solutions even in time, and assume each partizlergoes at most one impact during
each period of oscillation. Consequently, for a given pietimpacts either occur at half-period multiples or dooatur

at all. We denote by, C Z with k¥ = 1 or 2 the index sets of particles impactingtat (2p + k) T/2 for all p € Z, and

by I, := Z \ (I; U I5) the index set corresponding to non-impacting particleshée thus\,, = 0 for alln € I, and

kTt
/\n - 2Un(T) Z‘S(H%)T foralln e Ik.
PEZ

Introducing the splitting) = ((©), y(M, 4(?) corresponding t& = I, U I; U I, the above system can be reformulated
as a boundary value problem on a half-period inte(0al’/2),

ijn+yn_7(Ay)nzov n € Z, te(O,T/2), (4)
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with boundary conditions
g D)y =0forie Iy U, y®0)=-1, §9T/2)=0foriely UL, yM(T/2)=-1, (5)

and constraint

yt)+1>0, te(0,7/2). (6)
We solve this problem numerically for a chain &f = 100 oscillators with periodic boundary conditions. We use a
shooting method, i.e. determine= (y(©(0),y)(0),5(0)) € RY such that the three boundary conditions of (5) at
t = T'/2 are satisfied. This requires to solve a linear system fulstained through time-integration of the linear ODE (4)
(the case of nonlinear local or interaction potentials ddad addressed similarly using a Newton method). The canstra
(6) is checked posteriori Solution branches are continued for fixed valueg pfarying the linear stiffnesg and starting
from the uncoupled (or “anticontinuum®) limit = 0 [4]. In this limit, for all fixed T' € (m, 27), a choice of impacting
particles and phases (determinedibys) selects a unique solution which can be continued up to soexémnal value
of ~. The linear stability of periodic solutions is analyzedaihgh the eigenvalues of an associated monodromy matrix.
To perform this computation, we integrate (1)-(2)-(3) nuicedly using the Siconos software for nonsmooth dynamical
systems [10]. As an example, we describe in figure 1 threelifssrof periodic solutions obtained with this method,
namely two breather solutions (site-centered or bondeted) and a spatially extended solution (nonlinear nornoalej

moduli of eigenvalues
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Figure 1: Computation of different periodic solutions fr= 4.7. The left column displays particle positionstat 0 for v = 0.16,
for two breather solutions witlh, = {50}, I; = ) (site-centered breather, top panel) aad= {49}, I; = {50} (bond-centered
breather, middle panel), and for a nonlinear normal modk spgtial period two andy = 27, I; = () (bottom panel). These solutions
can be continued foy € [0, ymax) With ymax = 0.19. The site-centered breather is linearly stableffor. . =~ 0.13, after which it
becomes unstable (the top right panel displays the modthieoforresponding Floquet eigenvalues). The time evaiwfdhe position
and velocity of the impacting particle (= 50) is illustrated over a few periods for= 0.16 (right column, middle and bottom panels).
The bond-centered breather and nonlinear normal mode #raihstable for all values of.

The computation of periodic solutions based on the aboveoagp is much more effective than numerical continuation
of periodic solutions based on compliant models. In thetathse, impacts are described by smooth nonlinear Hertzian
type potentials leading to stiff ODE and costly numericahtiouation. Future extensions of this work will include an
analytical continuation and stability analysis based @stiime approach, the inclusion of dissipative impacts ancthfy,

and the application of the method to more complex finite-elemodels of continuous systems under impacts.

References

[1] J. Ahn and D.E. Stewart. An Euler-Bernouilli beam withndynic frictionless contact : penalty approximation and&xice Numerical Functional
Analysis and Optimization 22007), 1003-1026.

[2] V.K. Astashev and V.L. Krupenin. Experimental investign of vibrations of strings interacting with point obdts, Doklady Physics 462001),
522-525.

[3] H. Cabannes. Presentation of software for movies ofatibg strings with obstacleg\ppl. Math. Lett. 1q1997), 79-84.

[4] S. Flach and A. Gorbach. Discrete breathers : advanctgory and application®hysics Reports 462008), 1-116.

[5] O.V. Gendelman and L.I. Manevitch, Discrete breathargibroimpact chains: analytic solutiorBhys. Rev. E 78008), 026609.
[6] O.V. Gendelman, Exact solutions for discrete breatiheesforced-damped chaiRhys. Rev. E 8{2013), 062911.

[7] M. Lebellego.Phénomenes ondulatoires dans un modéle discret de falieigiie PhD thesis, Toulouse University (2011).

[8] M. Schatzman. A Hyperbolic problem of second order wittilateral constraints : the vibrating string with a concabstacle Journal of Mathe-
matical Analysis and Applications 72980), 138-191.

[9] A.F. Vakakis, L.I. Manevitch, Y.V. Mikhlin, V.N. Pilipbiuk and A.A. ZevinNormal Modes and Localization in Nonlinear Systgit896), Wiley
Series in Nonlinear Science.

[10] http://siconos.gforge.inria.fr/



