A. Dutta, B. Khattar, and A. Banerjee, Nonlinear analysis of electromyogram following gait training with myoelectrically triggered neuromuscular electrical stimulation in stroke survivors, EURASIP Journal on Advances in Signal Processing, vol.2012, issue.1, pp.10-1186
DOI : 10.1310/GEEU-YRUY-VJ72-LEAR

URL : https://hal.archives-ouvertes.fr/lirmm-00847888

G. Lyons, T. Sinkjaer, J. Burridge, and D. Wilcox, A review of portable FES-based neural orthoses for the correction of drop foot, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.10, issue.4, pp.260-279, 2002.
DOI : 10.1109/TNSRE.2002.806832

J. Burridge, P. Taylor, S. Hagan, D. Wood, and I. Swain, The effects of common peroneal stimulation on the effort and speed of walking: a randomized controlled trial with chronic hemiplegic patients, Clinical Rehabilitation, vol.30, issue.10, pp.201-210, 1997.
DOI : 10.1177/026921559701100303

J. Hausdorff and H. Ring, Effects of a New Radio Frequency???Controlled Neuroprosthesis on Gait Symmetry and Rhythmicity in Patients with Chronic Hemiparesis, American Journal of Physical Medicine & Rehabilitation, vol.87, issue.1, pp.4-13, 2008.
DOI : 10.1097/PHM.0b013e31815e6680

T. Kesar, R. Perumal, A. Jancosko, D. Reisman, K. Rudolph et al., Novel Patterns of Functional Electrical Stimulation Have an Immediate Effect on Dorsiflexor Muscle Function During Gait for People Poststroke, Physical Therapy, vol.90, issue.1, pp.55-66, 2009.
DOI : 10.2522/ptj.20090140

A. Kottink, L. Oostendorp, J. Buurke, A. Nene, H. Hermens et al., The Orthotic Effect of Functional Electrical Stimulation on the Improvement of Walking in Stroke Patients with a Dropped Foot: A Systematic Review, Artificial Organs, vol.77, issue.6, pp.28577-586, 2004.
DOI : 10.1016/S0895-4356(99)00041-4

Y. Laufer, J. Hausdorff, and H. Ring, Effects of a Foot Drop Neuroprosthesis on Functional Abilities, Social Participation, and Gait Velocity, American Journal of Physical Medicine & Rehabilitation, vol.88, issue.1, pp.14-20, 2009.
DOI : 10.1097/PHM.0b013e3181911246

Y. Laufer, H. Ring, E. Sprecher, and J. Hausdorff, Gait in Individuals with Chronic Hemiparesis: One-Year Follow-up of the Effects of a Neuroprosthesis That Ameliorates Foot Drop, Journal of Neurologic Physical Therapy, vol.33, issue.2, pp.104-110, 2009.
DOI : 10.1097/NPT.0b013e3181a33624

H. Ring, I. Treger, L. Gruendlinger, and J. Hausdorff, Neuroprosthesis for Footdrop Compared with an Ankle-Foot Orthosis: Effects on Postural Control during Walking, Journal of Stroke and Cerebrovascular Diseases, vol.18, issue.1, pp.41-47, 2009.
DOI : 10.1016/j.jstrokecerebrovasdis.2008.08.006

S. Robbins, P. Houghton, M. Woodbury, and J. Brown, The Therapeutic Effect of Functional and Transcutaneous Electric Stimulation on Improving Gait Speed in Stroke Patients: A Meta-Analysis, Archives of Physical Medicine and Rehabilitation, vol.87, issue.6, pp.853-859, 2006.
DOI : 10.1016/j.apmr.2006.02.026

R. Stein, D. Everaert, A. Thompson, S. Chong, M. Whittaker et al., Long-Term Therapeutic and Orthotic Effects of a Foot Drop Stimulator on Walking Performance in Progressive and Nonprogressive Neurological Disorders, Neurorehabilitation and Neural Repair, vol.17, issue.2, pp.152-167, 2010.
DOI : 10.1177/1545968309347681

P. Taylor, J. Burridge, A. Dunkerley, D. Wood, J. Norton et al., Clinical use of the odstock dropped foot stimulator: Its effect on the speed and effort of walking, Archives of Physical Medicine and Rehabilitation, vol.80, issue.12, pp.1577-1583, 1999.
DOI : 10.1016/S0003-9993(99)90333-7

H. Weingarden and H. Ring, Functional electrical stimulation-induced neural changes and recovery after stroke, Eura Medicophys, vol.42, issue.2, pp.87-90, 2006.

O. Dell, M. Dunning, K. Kluding, P. Wu, S. Feld et al., Response and prediction of improvement in gait speed from functional electrical stimulation in persons with poststroke drop foot, PM R, vol.pii, pp.1934-1482, 2014.

W. Liberson, H. Holmquest, D. Scot, and M. Dow, FUNCTIONAL ELECTROTHERAPY, ASAIO Journal, vol.8, issue.1, pp.101-105, 1961.
DOI : 10.1097/00002480-196204000-00075

J. Burridge, P. Taylor, S. Hagan, and I. Swain, Experience of Clinical Use of the Odstock Dropped Foot Stimulator, Artificial Organs, vol.11, issue.3, pp.254-260, 1997.
DOI : 10.1111/j.1525-1594.1997.tb04662.x

R. Wilder, T. Wind, E. Jones, B. Crider, and R. Edlich, Functional electrical stimulation for a dropped foot, J Long Term Eff Med Implants, vol.12, issue.3, pp.149-159, 2002.

P. Taylor, J. Burridge, A. Dunkerley, D. Wood, J. Norton et al., Clinical use of the odstock dropped foot stimulator: Its effect on the speed and effort of walking, Archives of Physical Medicine and Rehabilitation, vol.80, issue.12, pp.1577-1583, 1999.
DOI : 10.1016/S0003-9993(99)90333-7

D. Hart, P. Taylor, P. Chappell, and D. Wood, A microcontroller system for investigating the catch effect: Functional electrical stimulation of the common peroneal nerve, Medical Engineering & Physics, vol.28, issue.5, pp.438-448, 2006.
DOI : 10.1016/j.medengphy.2005.07.014

S. Sabut, R. Kumar, and M. Mahadevappa, Design of a programmable multi-pattern FES system for restoring foot drop in stroke rehabilitation, Journal of Medical Engineering & Technology, vol.12, issue.1, pp.195-204, 2010.
DOI : 10.3109/03091900903580496

Y. Shimada, S. Ando, T. Matsunaga, A. Misawa, T. Aizawa et al., Clinical Application of Acceleration Sensor to Detect the Swing Phase of Stroke Gait in Functional Electrical Stimulation, The Tohoku Journal of Experimental Medicine, vol.207, issue.3, pp.197-202, 2005.
DOI : 10.1620/tjem.207.197

F. Collen, D. Wade, and C. Bradshaw, Mobility after stroke: Reliability of measures of impairment and disability, International Disability Studies, vol.65, issue.1, pp.6-9, 1990.
DOI : 10.1093/rheumatology/18.1.43

D. Kotiadis, H. Hermens, and P. Veltink, Inertial Gait Phase Detection for control of a drop foot stimulator, Medical Engineering & Physics, vol.32, issue.4, pp.287-297, 2010.
DOI : 10.1016/j.medengphy.2009.10.014

B. Mariani, H. Rouhani, X. Crevoisier, and K. Aminian, Quantitative estimation of foot-flat and stance phase of gait using foot-worn inertial sensors, Gait & Posture, vol.37, issue.2, pp.229-234
DOI : 10.1016/j.gaitpost.2012.07.012

P. Breen, O. Keeffe, D. Conway, R. Lyons, and G. , A system for the delivery of programmable, adaptive stimulation intensity envelopes for drop foot correction applications, Medical Engineering & Physics, vol.28, issue.2, pp.177-186, 2006.
DOI : 10.1016/j.medengphy.2005.04.008

L. Lovse, J. Bobet, F. Roy, R. R. Mushahwar, V. Stein et al., External Sensors for Detecting the Activation and Deactivation Times of the Major Muscles Used in Walking, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.20, issue.4, pp.488-498
DOI : 10.1109/TNSRE.2012.2203338

G. Lyons, D. Wilcox, D. Lyons, and D. Hilton, Evaluation of a Drop Foot Stimulator FES Intensity Envelope Matched to Tibialis Anterior Muscle Activity During Walking, Proceedings of Fifth Annual Conference of the International Functional Electrical Stimulation Society, p.130, 2000.

U. Stanic, A. Trnkoczy, R. Acimovic, and N. Gros, Effect of gradually modulated electrical stimulation on the plasticity of artificially evoked movements, Medical & Biological Engineering & Computing, vol.53, issue.2, pp.62-66, 1977.
DOI : 10.1007/BF02441576

O. Halloran, T. Haugland, M. Lyons, G. Sinkjaer, and T. , Effect of Modifying Stimulation Profile on Loading Response During FES-Corrected Drop Foot, Proceedings of International Functional Electrical Stimulation Society (IFESS) Conference, pp.226-230, 2003.

C. Byrne, O. Keeffe, D. Donnelly, A. Lyons, and G. , Effect of walking speed changes on tibialis anterior EMG during healthy gait for FES envelope design in drop foot correction, Journal of Electromyography and Kinesiology, vol.17, issue.5, pp.605-616, 2006.
DOI : 10.1016/j.jelekin.2006.07.008

R. Heliot and B. Espiau, Online generation of cyclic leg trajectories synchronized with sensor measurement, Robotics and Autonomous Systems, vol.56, issue.5, pp.410-421, 2008.
DOI : 10.1016/j.robot.2007.09.019

URL : https://hal.archives-ouvertes.fr/hal-00346644

J. Ahn and N. Hogan, A Simple State-Determined Model Reproduces Entrainment and Phase-Locking of Human Walking, PLoS ONE, vol.28, issue.11, 2012.
DOI : 10.1371/journal.pone.0047963.t001

A. Ijspeert, Central pattern generators for locomotion control in animals and robots: A review, Neural Networks, vol.21, issue.4, pp.642-653, 2008.
DOI : 10.1016/j.neunet.2008.03.014

H. Khalil, Nonlinear Systems, NJ, 2002.

C. Lawrence, J. Zhou, and A. Tits, User' s Guide for Cfsqp Version 2.5: A c Code for Solving (Large Scale) Constrained Nonlinear (Minimax) Optimization Problems, Generating Iterates Satisfying all Inequality Constraints, 1997.

S. Bonnet and R. Heliot, A Magnetometer-Based Approach for Studying Human Movements, IEEE Transactions on Biomedical Engineering, vol.54, issue.7, pp.1353-1355, 2007.
DOI : 10.1109/TBME.2007.890742

URL : https://hal.archives-ouvertes.fr/lirmm-00371793

A. Coste, Continuous gait cycle index estimation for electrical stimulation assisted foot drop correction, Journal of NeuroEngineering and Rehabilitation, vol.11, issue.1, p.118, 2014.
DOI : 10.1016/j.robot.2007.09.019

URL : https://hal.archives-ouvertes.fr/hal-01060086