
HAL Id: hal-01060309
https://inria.hal.science/hal-01060309

Submitted on 3 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Execution of Heterogeneous Models for Thermal
Analysis with a Multi-view Approach

Amani Khecharem, Carlos Gomez, Julien Deantoni, Frédéric Mallet, Robert
de Simone

To cite this version:
Amani Khecharem, Carlos Gomez, Julien Deantoni, Frédéric Mallet, Robert de Simone. Execution
of Heterogeneous Models for Thermal Analysis with a Multi-view Approach. FDL 2014 : Forum on
specification and Design Languages, Oct 2014, Munich, Germany. �hal-01060309�

https://inria.hal.science/hal-01060309
https://hal.archives-ouvertes.fr

Execution of Heterogeneous Models for Thermal

Analysis with a Multi-view Approach

Amani Khecharem, Carlos Gomez, Julien DeAntoni, Frédéric Mallet and Robert de Simone

Univ. Nice-Sophia Antipolis, CNRS, UMR7271, I3S F-06900 Sophia Antipolis

INRIA, F-06902 Sophia Antipolis

Email: {julien.deantoni, frederic.mallet}@unice.fr, {amani.khecharem, robert.de simone}@inria.fr

Abstract—To deal with the high complexity of embedded
systems, engineers rely on high-level heterogeneous models that
combine functional and non-functional aspects, hardware/soft-
ware artifacts, structural and behavioral descriptions. PRISMSYS
is a system-level multi-view modeling framework, which provides
a means to specify functional and non-functional aspects in
interrelated views. Each concern/view is addressed separately
with a dedicated set of models and correspondence rules,
maintaining the semantic consistency between those different
views. The behavioral specification mixes UML state machines
with equational models defined as SYSML parametric diagrams.
To supply a complete non-functional property-aware simulation
environment, it is mandatory to formalize 1) the execution
semantics of the UML state machines, 2) the SYSML parametric
diagrams and 3) the coordination between them. This is achieved
by using CCSL, the Clock Constraint Specification Language,
to provide an event-based semantics for each model and their
coordination. The proposed co-simulation framework combines
TIMESQUARE, a discrete event simulator for CCSL, and Scilab,
a tool for numerical computation. The framework is illustrated
on a CPU thermal manager case study with a joint simulation
of both its functional and non-functional models.

Keywords-Multi-View, Heterogeneous Models, UML.

I. INTRODUCTION

The design of embedded systems requires a strict con-

formance to the non-functional requirements, such as heat

dissipation, energy consumption, safety or time performance.

These properties are usually addressed (i.e., modeled and

analyzed) by experts of different domains. Experts have their

own languages and tools to describe the system modeled

from their own point of view. Nevertheless, these expert’s

models are strongly connected; the behavior of a model could

impact the behavior of the other ones. For instance, powering

a component off in a power management model affects the

functional behavior and the performances of the component

in a functional description model.

The recent IEEE 42010 standard [1] proposes a common

vocabulary to capture the different views of heterogeneous

models. Correspondences are used to associate domain ele-

ments from different views. For instance, in a thermal view, if

the temperature of a CPU is reaching the maximum acceptable

temperature, the controller may reduce the clock frequency

and voltage level (or turn the CPU off) to avoid damaging the

CPU. This syntactic link between a non-functional property in

a specific view and its impact on the other view should also

be considered from a semantic point of view.

More generally, the behavior specification of an embedded

system should explicitly take the non-functional properties

into account to provide a correct representation of the sys-

tem behavior. While it may eventually be implemented by

using specific sensors, there is a need for early modeling

and co-simulation of two types of behavior: one based on

a discrete (logical) time representing the functional behavior

of the system; and another one based on continuous time

representing the evolution of non-functional properties and/or

other physical phenomenon.

PRISMSYS [2] proposes to tack the semantics of the MoCs

on top of traditional engineering models based on the UML

(Unified Modeling Language [3]) or one of its specializations

like SYSML [4] or MARTE [5]. PRISMSYS [2] also proposes

to keep the semantics of the MoC explicit and separate from

the functional model to ease its extraction, modification and

analysis. PRISMSYS implements the IEEE 42010 standard. It

relies on UML and SYSML to capture both functional and

non-functional properties [6].

In this paper, we propose an operational framework for the

joint simulation of both the discrete and continuous parts of

the PRISMSYS model. The semantics of PRISMSYS models is

described using the Clock Constraint Specification Language

(CCSL [7], [8]). CCSL is a formal declarative language for

discrete logical time specification amenable to analysis and

simulation in the associated tool TIMESQUARE [9]. We have

built a dedicated backend for TIMESQUARE to drive, not only

the execution of the discrete part of the model, but also of the

continuous part. This particular aspect is delegated to Scilab

tool [10]. We illustrate the approach on a thermal manager and

we present the model, explain the way the backend is built and

give some execution results.

The paper starts with discussing related works (Section II)

on both heterogeneous modeling and modeling of thermal

aspects. Then, Section III briefly recalls the fundamentals

of PRISMSYS. Section IV describes the execution semantic

of PRISMSYS for heterogeneous execution based on CCSL.

CCSL is introduced on-the-fly, with only the minimum mate-

rial required. Finally, the implementation of TIMESQUARE’s

backend for Scilab is described in Section V and illustrated

on a case study in Section VI. Section VII concludes with

possible extensions.

II. BACKGROUND AND RELATED WORK

A. Heterogeneous Modeling

The joint use of different Models of Computation

(MoCs) [11], [12], [13] for a single system is known as Het-

erogeneous Modeling. A MoC (e.g., Synchronous Data Flow,

Finite State Machine or Continuous Time) makes explicit the

execution semantics applied to a specific syntactic model.

Several approaches and tools address the problem of modeling

and simulation of heterogeneous models.

Hybrid automata [14] offer a theoretical framework to

combine discrete and continuous phenomena. An attempt to

mix Hybrid Automata and CCSL has been conducted [15].

However, hybrid automata do not offer any specific support for

combining heterogeneous syntactic models (dataflow, equa-

tions, control) or for a clean separation of preoccupations or

views. This is addressed here.

Ptolemy II [16] relies on a generic actor model to capture

hierarchical heterogeneous models. The model of computation

(MoC) and its interactions with other MoCs are described in

a so-called director that conforms to a predefined Java API.

Ptolemy II is widely used and has inspired many derived

products or evolutions. There are two main differences with

our proposal. First, we rely on UML and SYSML to capture

the structural information instead of a pure actor model.

Second, the synchronization and scheduling constraints are

given explicitly in CCSL rather than being hidden inside the

Java code and mixed with the functional description. Making

the MoC explicit and separate allows for reasoning on its

properties.

BIP [17] is an interesting alternative that supports explicit

heterogeneous interaction models. The behavior is described

using timed automata, then several interaction schemes can be

used. Contrary to BIP, PRISMSYS does not require to use state-

based representation and may also rely on data flow models or

equational models to capture continuous aspects. This increase

of expressiveness comes at the cost of decidability results.

There are several works that focus on the interactions be-

tween discrete and continuous time, like MatLab/Simulink or

Scilab/Scicos. Amongst the solutions that support synchronous

models of computation, Zelus [18] provides a nice integration

with Lustre. However, in all these solutions, the functional

and interaction models are intertwined and hidden as design

choices inside the tool. Our proposal is to make the choices

explicit in the model (like using a fixed-step solver with a

given step) and use the model to drive the tools.

On the engineering side, SYSML [4] introduces the notion

of parametrics to capture acausal models. This is adequate

to describe continuous functions or relations and PRISMSYS

heavily rely on this new construct to capture the thermal

and power-related information. Our proposal is to define an

execution framework to execute such models.

B. Non-Functional (Thermal) Modeling

Non-functional properties are more and more important in

many embedded systems, they must be consequently taken

into account during the design process.

Most of the time, non-functional properties are modeled

(and analyzed) by using specific tools. For instance, to analyze

the impact of temporal properties on the system schedulability,

experts in time performance use tools such as Cheddar [19]

where the focus is made on specific temporal properties

while the other aspects of the application and its architecture

are largely abstract away. Additionally, to study the thermal

aspects of a system, temperature experts employ tools like

Hotspot [20] or Aceplorer [21]. Once again, the tools give

many details on the properties that deal with their specificity

(in this case, the thermal equations), but the other parts of the

system remains largely abstract.

In consequence, the study of several non-functional prop-

erties requires the duplication of some parts of the system

model in these dedicated tools. Due to the strong abstraction

of specific parts, these tools cannot be used standalone. For

instance, since Aceplorer does not model the system functional

behavior, it needs an execution scenario, generated from a

functional system simulation, to activate the elements of its

power model and consequently evaluate the power consump-

tion of the system. In the same way, Hotspot is based on

the Compact Thermal Model [22], which defines the model

of a the thermal features of the system component and their

thermal influence over their neighbors. This model does not

represent the system activity needed by Hotspot to generate

the temperature layout of the system.

One current problem comes from the use of dedicated con-

troller (e.g., the power manager of an OMAP platform [23])

whose goal is to change the functional behavior in reaction

to non-functional property evolution. For instance, because

the power consumption of a chip is exponentially increasing

with its temperature, a power controller can choose to slow

down (or to stop) a chip when its temperature is exceeding a

specific threshold. In this case, the functional simulation sets

the chip activity according to the chip temperature, but the chip

temperature in tools like Aceplorer or Hotspot requires the

chip activity. Therefore, there is a cyclic dependency between

the execution of the tools that can be solved by a co-simulation

of the domain specific models (or tools).

As a consequence, it is important to define a central (multi-

view) model where the behavioral dependencies are made

explicit. The semantics of these dependencies can thus be

taken into account to coordinate the domain specific models.

To specify these dependencies, we define a system-level frame-

work where the behavioral semantics of each part takes into

account its links to the other parts of the system. We focused

here on the co-simulation of these models to show the benefits

of the approach. This framework is named PRISMSYS.

III. PRISMSYS: A MODELING MULTI-VIEW FRAMEWORK

FOR SYSTEMS

PRISMSYS is a multi-view framework for modeling sys-

tems, focused on the description and analysis of functional and

non-functional aspects. In this framework, a view characterizes

the aspects of a specific domain relevant for the system.

For instance, time performance model, power model and

temperature model are different views of the same system, and

they characterize aspects such as time, power consumption and

temperature evolution.

Figure 1 depicts the main elements of PRISMSYS. A

PRISMSYS view contains up to three sub-views: Control, Struc-

tural and Equational. The structural sub-view states domain

specific elements, which can possibly be an abstraction of

elements that exist in another view. These elements define the

non-functional properties relevant from the domain point of

view. The behavior of these elements is described by Finite

State Machine (FSM). The FSM abstracts the operation modes

of the element in a specific domain and the transitions are

sensitive to events generated from the control sub-view. We

use UML components to represent these elements and MARTE

Non-Functional Properties (NFP) to type the properties defined

in the sub-view elements. The equational sub-view specifies

the equations that characterize the properties stated in the

structural sub-view. We use SYSML Parametric Diagram to

represent the equational sub-view. The control sub-view com-

mands the execution of the elements specified in the structural

sub-view. A way to specify these views is to use controllers,

elements which behavior is stated as a FSM. In contrast to the

structural sub-view FSM, the transitions of the controller FSM

are sensitive to the evaluation of a condition, i.e., to a guard.

Once the transition is fired, an effect is produced, sending an

event to the corresponding FSM in the structural sub-view. To

distinguish between both FSMs, we employ the term mode-

FSM to reference the FSM specified in structural sub-view.

Fig. 1. PRISMSYS View

The consistence between different views is defined through

correspondences. A correspondence is a syntactic association

between elements of two different views, e.g., the abstraction

of an element from a first view characterizes this element from

another point of view. Besides specifying associations between

views, sub-views also own relationships between them. We

named them sub-correspondences. For instance, PRISMSYS

provides a state-equation association through the charac-

terization sub-correspondence. This sub-correspondence was

defined since it is not possible to specify when a SYSML

equation is active or not by activating a state in a FSM.

Equivalence is another sub-correspondence used to bind the

structural sub-views properties to the value calculated on the

equational sub-view. To address the control events of the

mode-FSMs explicitly, a control sub-correspondence must be

specified. Values tested in the FSM guards are extracted from

the structural sub-view properties by using the data sub-

correspondence.

A PRISMSYS view combines the execution of two kinds

of MoCs: FSMs based on a discrete (logical) time, and the

equations based on a Continuous Time. This MoC combination

could be homogeneous (FSM and Mode-FSM) or heteroge-

neous (Mode-FSM and Continuous Time). To give an execu-

tion semantics to FSM, Mode-FSM, Continuous Time and the

coordination between them, PRISMSYS defines the relevant

events of the models together with constraints that specify the

causal relations and synchronizations. Each relevant action in

a MoC is expressed as an event and we use CCSL [24], an

event constraint language, to represent the allowed sequences

of actions conforming to the selected MoC.

IV. PRISMSYS EXECUTION SEMANTICS

PRISMSYS behaviors, which initially are described by a

static definition (meta-model), need a formal way to express

their actions associated with their static elements. CCSL pro-

vides the needed concepts to express the actions of these

behaviors allowing the association action-element and the

behavioral analysis by simulation. First, we define the FSM

execution semantics. Second, we state the execution semantics

in Continuous Time. Finally, we describe the coordination

between FSMs and Continuous Time.

A. Constraint Clock Specification Language

Execution Semantics of PRISMSYS relies on the CCSL

formalism. We recall briefly the basic facts on CCSL, which

is presented at large in [7], [8].

In CCSL, it is possible to define Clocks, which are possibly

infinite ordered sets of instants. These clocks represent relevant

changes in a system, on which constraints can be specified.

A clock can be either chronometric or logical. The former is

employed to specify a constraint associated with a physical

dimension like the physical time or distance. The later defines

a terminology referring to events (if events are sequences of

event occurrences, as clocks are sequences of clock ticks).

Distinct clocks can be independent (fully asynchronous), or

partially ordered. The goal is that, after completion of design

the specification represents a set of partially ordered clocks

and eventually, at runtime, all clocks are mapped onto a single,

most fundamental and totally ordered master clock representa-

tion simulation/execution step, but before that, designing with

independent logical clocks is usually highly beneficial.

Clocks (and clock ticks) may enjoy two basic types of

ordering relations: a clock is faster than another one (based on

tick precedence), or a clock may be subclock of another one

(based on tick simultaneity). The former relation is denoted

a ≺ b, the latter a ⊂ b, where a and b are clocks. Relations,

a = b (all ticks are simultaneous) or a # b (no ticks are

common), can also be stated.

Based on those types of relations, more sophisticated con-

straints may be introduced. A sample is given:

• a ∼ b: a and b tick once in turn,

• a ❉ b: defines a new clock that ticks with b if there was

a tick of a after the preceding tick of b,

• a H mask: defines a new clock that is subclock of a
but only ticks in a place where mask, a periodic binary

word, reads 1.

We employ these CCSL relations and expressions to define

the execution semantics of FSM, the evaluation of equations

(Continuous Time) and the coordination between them. The

execution semantics of finite state machine are defined on the

UML metamodel by an ECL (Event Constraint Language [25])

specification. Consequently, the CCSL specification can be

automatically generated for a specific FSM model.

B. Finite State Machine Semantics

In a FSM, there are various relevant events that occur during

its execution. Most of the FSM concepts are associated with

one or more events that describe a particular FSM execution

change, e.g., the entering in a state or the firing of a transition.

These events are represented in CCSL by clocks. Table I

summarizes the clocks defined to represent the relevant actions

of a FSM.

Clock Action

init Initializing the execution of FSM

senter Entering state s

sleave Leaving state s

fire tij Firing transition tij from si to sj
guardij Ticking once the tij guard evaluation is true

triggerij Receiving a trigger event on tij
effectij Generating an Event once tij is fired

TABLE I
CLOCKS REPRESENTING THE RELEVANT ACTIONS IN A FINITE STATE

MACHINE.

We give a precision about the FSM model, we constrain that

a transition tij is sensitive to either a guardij or a triggerij ,

however not both of them. If a guard is defined, then guardij
clock is stated, else triggerij is specified.

Once the FSM clocks are defined, we identify the con-

straints on these clocks to describe the FSM execution se-

mantics. We start defining the activation of a specific state.

A state is active between the corresponding entering and

leaving occurrences. In other words, the state s is active

when the kth occurrence of senter clock ticks and it stops

being active when the kth occurrence of sleave ticks. A state

cannot be transitory, i.e., the senter and sleave ticks cannot

be simultaneous. Moreover, a state cannot be activated if it

is already active. Consequently, we use an Alternate relation

between senter and sleave in CCSL for all the states of FSM

as follows:

senter ∼ sleave (1)

Equation 1 is specified in ECL by an event invariant on the

concepts of UML State Machine as illustrated in Figure 2.

This ECL constraint defines two properties whose type is

Event (enter and leave) specified in the context of the State

UML concept. The relation between both events is Alternate,

i.e., this ECL specification represents senter, sleave and their

relation for all the State instances in a model. While not

c o n t e x t S t a t e
def : e n t e r : Event

def : l e a v e : Event

inv en te rOnceBefo reToLeave :
R e l a t i o n A l t e r n a t e s (s e l f . e n t e r , s e l f . l e a v e)

Fig. 2. ECL specification of the UML State activation.

detailed in this paper, all the CCSL constraints were also

specified in ECL in order to automate the generation of the

CCSL specification for any FSM model.

According to the execution semantics of FSM [26], a

transition tij from a state si to a state sj is fired if two

conditions are achieved: si is active, and either the tij guard

evaluation is true or triggerij ticks. However, the instant

when the guard is evaluated is not specified. Because it affects

the timing properties, it is of primary importance for a state

machine of an embedded system to define when the guard is

evaluated. In PRISMSYS, we explicitly define a chronometric

clock named eval that specifies the period when the guard

is evaluated. This clock is the same for all the guards in

the system and its period must be chosen according the non-

functional property dynamic (see section IV-D). Hence, when

the evaluation of the tij guard condition returns true, guardij
occurs. Considering that si is active and guardij ticks, then

the tij transition is fired. In contrast, if a transition is sensitive

to a trigger event, the tij transition is fired when triggerij
ticks. We specify the relationship of these clocks by using

CCSL expressions. We present the CCSL constraints that define

when to fire the tij transition by guardij :

fire tij = [(sienter
❉ guardij) sileave

] • fire tij

this expression can be read as: a transition tij is fired if

guardij ticks while the state is active (i.e., after a sienter

occurrence and up to an occurrence of sileave
).

The state si stops being active (i.e., sileave
ticks) when one

of its outgoing transitions occurs. The relationship between

the leaving of a state and the firing of the outgoing transitions

is specified as follows:

sileave
=

⋃
t∈toutsi

fire t

where toutsi is the set of outgoing transitions from si.
When a transition is fired, the targeted state is entered

simultaneously, i.e.,entering state sj coincides with the firing

of all the incoming transitions. This is specified as follows:

sjenter
=

⋃
t∈tinsj

fire t

where tinsj
is the set of incoming transitions to sj .

If the transition tij has an action, the effectij clock occurs

simultaneously with the transition firing. This relationship is

specified by:

effectij = fire tij

The UML state machines must have at least one initial state.

We constrain them to have one and only one initial state. The

clock init is specified to start the FSM execution by activating

the initial state. We only need one tick in init to activate the

initial state. Thus, we state init in CCSL as follows:

init = init H 1(0)w

this equation forces init to tick only once.

The init clock must be associated with the initial state.

Considering that sinit is the initial state of the FSM, we define

its activation as follows:

sinitenter
= init

By using these rules, we defined the event based semantics

of the UML state machine. It is then possible to reason about

a specific state machine and to simulate it in TIMESQUARE,

obtaining a timing diagram and/or a diagram animation. It

is now mandatory to define the continuous time execution

semantics.

C. Continuous Time Execution Semantics

In the considered systems, non-functional properties evo-

lution often depend on physical time. There are two main

families of continuous time solvers, the fixed-step solvers and

the variable step solvers. A fixed-step solver evaluates the

equation of the modeled process periodically with a predefined

step size. The disadvantage of such solvers is that they can hide

some discontinuities in the modeled process if the step size

is too big. The variable step solvers adapt the step size to the

dynamic of the modeled process in order to avoid hiding such

discontinuities. This is of great importance when the goal is

to provide an accurate representation of the modeled process.

In our case, we model by equations the evolution of non-

functional properties according to time. One important goal

of this work is to allow the prototyping of non-functional

property managers. Eventually, these managers will retrieve

the value of the corresponding non-functional properties by

using (periodic) sensors. Consequently, we do not try to

obtain the best representation of the non-functional property

evolution, but rather a representative view of the process at

specific points in time, as seen by the managers. Therefore, we

can use either fixed-step or variable-step solvers but we do not

use zero crossing functionality and we explicitly specify in the

UML model the point in time when the value from the process

are retrieved. To ease the implementation we used for now only

fixed-step solvers so that the points in time when the value

from the process are retrieved are periodic and correspond to

the solver fix step.

In the model, to specify the step size used by the solver, we

employ a chronometric clock from MARTE. In CCSL, this is

encoded by discretizing a dense clock (i.e., a clock in which

whatever pair of two instants you choose, there exists always

one instant between these two instants). We use the physical

time dense clock defined in CCSL and we name the discretized

clock step. At each occurrence of step, the active equations

specified in the model are evaluated by the continuous time

solver. In CCSL, the step clock is defined by:

step , physicalT ime discretizedBy ∆t (2)

where ∆t is the step size as defined in the UML model and

used by the fixed-step solver.

Once the FSM and Continuous Time execution semantics

are defined, we must coordinate the actions of both semantics

to achieve a complete execution of a PRISMSYS view.

D. FSM and Continuous Time Coordination

We provided the event based semantics for the UML state

machine (FSM) and for the SYSML parametric diagram

(Continuous Time). Control and structural sub-views follow

the FSM semantics and the equational sub-view follows a

Continuous Time semantics. Instead of providing a tailored

semantics for a new model mixing both semantics, such as in

an hybrid automata [26], we propose to define the semantics

of the syntactic association between the different sub-views

(named sub-correspondences in PRISMSYS). The coordination

semantics is also specified in CCSL.

In the structural sub-view, the FSM are representing some

mode automata. The transition between two modes is caused

by the reception of an event sent from the control sub-

view. Therefore, there is a correspondence between the output

events generated from the control sub-view and the events

associated with the mode transitions. This correspondence

is syntactically represented by control connectors between

control and structural sub-views.

From the behavioral semantic perspective, a control event

generated from the FSM of the control sub-view can cause

a mode transition in the mode automata of an element in

the structural sub-view. This relation can be tailored to be

synchronous, purely causal or even timed. Here we chose

that the sending and the reception of an event occurrence

is simultaneous. By using CCSL, if an event occurrence is

transferred by a control connector from a transition tij to the

trigger of a mode automata (triggermode automata) we enforce

the following coincidence relation:

effectij = triggermode automata

we read this expression as a control event, produced dur-

ing the transition in a control FSM (effectij), coincides

with the trigger of a transition in the mode automata

(triggermode automata).

In PRISMSYS, the mode automata are used to specify the

modes under which there are different distributions that govern

the evolution of a non-functional property. For instance the

instantaneous consumption of a CPU depends on its activity

(e.g.,sleep, idle or active). These evolutions are specified by

different equations that are enabled or not according to the

active state of a mode-FSM (see section III). To represent

this semantics, a mode-FSM and an equation are syntactically

linked by a characterization sub-correspondence. When a

mode becomes active (i.e., clock senter ticks), the associated

equation is enabled. When the mode is left, (i.e., clock sleave
ticks), the corresponding equation is disabled. Of course, for

the model to be consistent, a non-functional property should

be at least defined by one equation during a run.

We have two chronometric clocks in the system. The one

used for the evaluation of the guard and the one that defines

the fix step of the solver. To avoid the evaluation of the

guards without a new value computed by the equation, the

chronometric clock used for the solver step must be the same

or faster than the one used to evaluate the guards. We express

this coordination in CCSL as:

step 4 eval (3)

where eval is the clock whose instants command the evalu-

ation of the guards and step is the fix step of the solver. If

these two clocks are simultaneous, it is mandatory to evaluate

the equations before the evaluation of the guards to respect

the causality (even if instantaneous in this case). It guarantees

that the non-functional properties used in the guards have the

latest value resulting from equation evaluation.

Now that the execution semantics of PRISMSYS is specified,

the remainder of the paper presents the associated implemen-

tation.

V. PRISMSYS MODEL CO-SIMULATION

TIMESQUARE is an Eclipse and model-based environment

for the specification, analysis and verification of causal and

temporal constraints. Particularly, TIMESQUARE allows defin-

ing, analyzing and verifying a CCSL specification. Neverthe-

less, this tool is not adapted to evaluate equations (e.g., power

and temperature equations). Therefore, we use Scilab [10], an

open source tool for numerical computation, as a fixed-step

solver for the evaluation of the equations. To coordinate the

TIMESQUARE solver with the Scilab solver, we implemented

a TIMESQUARE backend that acts like a “connector” between

these tools. We named it T2 BACKEND FOR SCILAB.

Figure 3 depicts an overview of this implementation. It

shows three dependent domains: the one on top is the PRISM-

SYS model, detailed in Section III. The one at bottom describes

the TIMESQUARE and Scilab co-simulation and the one in

the middle defines the PRISMSYS semantics to execute and to

coordinate the behavior of the PRISMSYS model. We focus in

this section on the block at the bottom, the T2 BACKEND FOR

SCILAB.

TIMESQUARE offers the possibility to add user-defined

backends that trigger specific actions on selected event occur-

rences or relations. These new backends can be added to the

backend manager by using an eclipse extension point. During

a simulation, the backend manager receives the status of each

clock (it ticks or not) at each simulation step. It also receives

the status of relations (causality and coincidence) as well as

the status of the assertions (violated or not). A developer can

create its own backend that subscribes to some of these events.

TIMESQUARE is already distributed with some backends like

the VCD backend that draws the timing diagram of the clocks

during the simulation and the Papyrus Animator that animates

the elements of an UML model specified in Papyrus1. Alike,

by using the backend manager and connecting to the specific

1http://www.eclipse.org/papyrus/

extension point, we implement T2 BACKEND FOR SCILAB as

an Eclipse Plug-in to bind the TIMESQUARE solver module

with the Scilab solver. This back-end receives the status of the

clock (it ticks or not) at each simulation step and consequently

configures the Scilab solver according to the information in the

UML PRISMSYS model and drives the Scilab solver to evaluate

the equations during the simulation. The user can visualize

the value of the non-functional properties thanks to the Scilab

graphic window called by the Scilab solver.

The solver configuration consists in the extraction of dif-

ferent equations from the model as well as the extraction

of the chronometric clock that defines the solver step size.

It is mandatory for the backend to register to the entering

and leaving clock of all the mode-FSM states linked to an

equation in order to add or remove it from the Scilab solver

accordingly. This backend also commands the evaluation of

the guards, therefore such pieces of information must also be

extracted from the PRISMSYS model. During the simulation,

the T2 BACKEND FOR SCILAB receives the status of each

relevant clocks. When an entering state (sienter
) clock ticks, T2

BACKEND FOR SCILAB adds the equation(s) associated with

the active state. When the step clock ticks, the active equations

are evaluated by the Scilab solver. The result of the evaluation

is plotted in a Scilab plot window and stored in the backend.

For each step occurrence, the guards are evaluated. If a guard

is evaluated to true, T2 BACKEND FOR SCILAB forces the

associated guard clock occurrence in the TIMESQUARE solver

(see guardij in Section IV). Such occurrences can cause a

change of the controller state, and then a mode change. We can

note that the guard evaluation is done for each step occurrence

and not necessarily immediately when the parameter exceeds

the thresholds. It emphasizes the importance to select the

appropriated solver step size in order to react soon enough

to the evolution of the non-functional properties.

VI. CASE STUDY: CPU THERMAL CONTROLLER

The case study shows how a thermal controller can be

prototyped by using PRISMSYS. The temperature, a non-

functional property, must be monitored in order to reduce the

power consumption, extending the battery charge and fulfilling

the temperature requirements. The CPU is the component on

which we focus in this case study. We define a CPU muti-

view model by using PRISMSYS. In Figure 4, we present

a simplified version of the thermal view model. The figure

depicts the three PRISMSYS behaviors (control, modes and

equations).

The structural sub-view of this figure represents the abstrac-

tion of a CPU from a thermal point of view. It describes

a non-functional property representing the temperature (T).

The equational sub-view defines the equations that characterize

the evolution of the CPU temperature. The Control sub-view

specifies a thermal controller, which changes the activity of

the CPU according to its temperature to avoid damages.

The CPU thermal behavior is represented by two modes:

COOLING and HEATING. Each mode corresponds to a dif-

ferent temperature evolution. COOLING indicates the CPU

Fig. 3. T2 BACKEND FOR SCILAB Overview on a PRISMSYS thermal view case study.

Fig. 4. Case Study: CPU Thermal Controller

temperature is decreasing. In contrast, HEATING means that

the CPU temperature is increasing. In order to define the

evolution of the temperature, an equation, specified in the

equational sub-view, is associated (point 2 in Figure 4).

Thus, we associate the HEATING mode with the equation

dT/dt = −0.1 ∗ (T − 100) and the COOLING mode with the

equation dT/dt = −0.1∗(T−30) where 100 is the temperature

maximum for the CPU and 30 is its minimal idle temperature.

The unit of both temperatures is ◦C.

The change between two modes occurs when the transition

between them is fired. Transitions are sensitive to associated

events sent from the control sub-view (point 1 in Figure 4).

The control sub-view contains a thermal controller whose

task is to manage the temperature evolution of the CPU. The

controller behavior is another state machine of two states:

LOW and HIGH. LOW represents that the CPU temperature

is below the recommended temperature. HIGH expresses the

temperature exceeds the maximum recommended value. In

contrast to the CPU thermal FSM, the transition of the

controller is sensitive to the evaluation of guards. In this case

study, guards evaluate if the temperature surpasses 85◦C or

is lower than 80◦C (point 3 in Figure 4). Once a transition

is fired, a specific event is sent to the CPU thermal FSM in

order to change its mode and thus activate the equation to be

evaluated.

Figure 5 depicts the evolution (plotted in Scilab) of the tem-

perature T according to the time t. When the simulation starts,

i.e., at t=0, T2 BACKEND FOR SCILAB extracts the clocks

associated with modes COOLING and HEATING and the step

clock. T2 BACKEND FOR SCILAB also identifies and extracts

the thermal equations. In our thermal model, we assume that

the ambient temperature is 25◦C. Thus, the TIMESQUARE

simulation starts at 25◦C and the activating LOW and HEAT-

ING states (which are the initial states) are activated. When

the temperature exceeds 85◦C, the corresponding transition is

fired, the state changes to HIGH and the eCool event is sent

to the CPU Thermal Modes (other events, which set the CPU

activity to idle in other views, are also sent but not represented

here). Such an event causes the leaving of the HEATING mode

to enter in the COOLING mode, consequently deactivating

the equation dT/dt = −0.6 ∗ (T − 100) and activating the

equation dT/dt = −0.6 ∗ (T − 30). In the next simulation

steps, the associated COOLING equation is evaluated and the

temperature decreases. When the temperature is lower than

80◦C, the controller state machine changes to the LOW state

and the cycle is repeated.

Fig. 5. PRISMSYS ThermalView simulation in Scilab by using T2 BACKEND

FOR SCILAB.

In Figure 5, we note that the temperature actually exceeds

some how the threshold defined in the guard. This is due to

the periodic monitoring of the temperature and the periodic

evaluation of the guard. To limit such phenomenon, one could

decrease the step size. However, this phenomenon has to be

taken into account during the development of the system.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented a simulation framework

based on PRISMSYS to execute heterogeneous models that

combine functional and non-functional views. We have fo-

cused on the execution semantics of the PRISMSYS discrete

(logical) time (FSM) and its coordination with the Contin-

uous Time model of the non-functional property equations.

We have also described the implementation, T2 BACKEND

FOR SCILAB, a connector between TIMESQUARE and Scilab

to enable the co-simulation of discrete (logical) time and

Continuous Time. A simple thermal view model is used to

illustrate PRISMSYS and the execution framework. As a future

work, we intend to explore further the different correspondence

rules between views. Some correspondence rules are mere

importation of elements from one view to another one. Other

ones are closer to coordination/synchronization rules.

VIII. ACKNOWLEDGEMENT

This work is partially supported by the ANR INS Projects

HOPE (ANR-12-INSE- 0003) and GEMOC (ANR-12-INSE-

0011).

REFERENCES

[1] “Systems and software engineering – architecture description,”
ISO/IEC/IEEE 42010:2011(E) (Revision of ISO/IEC 42010:2007 and

IEEE Std 1471-2000), pp. 1 –46, 2011.

[2] C. Gomez, J. DeAntoni, and F. Mallet, “Multi-view Power Modeling
Based on UML, MARTE and SysML,” Software Engineering and

Advanced Applications (SEAA), pp. 17 – 20, 2012.
[3] OMG, “OMG Unified Modeling Language,” Object Management Group,

vol. v2.4.1, Aug. 2011.
[4] ——, “Omg. systems modeling language (sysml),” Object Management

Group, vol. v1.2, Jun. 2010.
[5] ——, “UML Profile for MARTE,” Object Management Group, vol. v1.1,

Oct. 2010.
[6] C. Gomez, J. DeAntoni, and F. Mallet, “Power Consumption Analysis

Using Multi-View Modeling,” Power and Timing Modeling, Optimiza-

tion and Simulation (PATMOS), pp. 235 – 238, 2013.
[7] C. André, J. DeAntoni, F. Mallet, and R. de Simone, The Time Model

of Logical Clocks available in the OMG MARTE profile. Springer
Science+Business Media, LLC 2010, July 2010, ch. 7, pp. 201–227.

[8] C. André, “Syntax and Semantics of the Clock Constraint Specification
Language (CCSL),” INRIA, Research Report RR-6925, 2009. [Online].
Available: http://hal.inria.fr/inria-00384077

[9] J. DeAntoni and F. Mallet, “Timesquare: treat your models with logical
time,” in Proceedings of the 50th international conference on Objects,

Models, Components, Patterns, ser. TOOLS’12. Berlin, Heidelberg:
Springer-Verlag, 2012, pp. 34–41.

[10] “Scilab Consortium,” Scilab. http://www.scilab.org/, [Sep.10 2013].
[11] S. Edwards, L. Lavagno, E. Lee, and A. Sangiovanni-Vincentelli, “De-

sign of embedded systems: formal models, validation, and synthesis,”
Proc. of the IEEE, vol. 85, no. 3, pp. 366–390, 1997.

[12] A. Jantsch, Modeling embedded systems and SoC’s: concurrency and

time in models of computation. Morgan Kaufmann (an imprint of
elsevier science), 2004.

[13] A. Jantsch and I. Sander, “Models of computation and languages for
embedded system design,” Computers and Digital Techniques, IEE

Proceedings, vol. 152, no. 2, pp. 114–129, Mar 2005.
[14] T. Henzinger, “The theory of hybrid automata,” in Verification of Digital

and Hybrid Systems, ser. NATO ASI Series, M. Inan and R. Kurshan,
Eds. Springer Berlin Heidelberg, 2000, vol. 170, pp. 265–292.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-59615-5 13

[15] J. Liu, Z. Liu, J. He, F. Mallet, and Z. Ding, “Hybrid marte statecharts,”
Frontiers of Computer Science, vol. 7, no. 1, pp. 95–108, 2013.

[16] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Sachs,
Y. Xiong, and S. Neuendorffer, “Taming Heterogeneity - The Ptolemy
Approach,” Proceedings of the IEEE, vol. 91, no. 1, pp. 127–144, 2003.

[17] A. Basu, M. Bozga, and J. Sifakis, “Modeling heterogeneous real-time
components in bip,” in SEFM, 2006, pp. 3–12.

[18] T. Bourke and M. Pouzet, “Zelus: A Synchronous Language
with ODEs,” in 16th International Conference on Hybrid Systems:

Computation and Control (HSCC’13), Philadelphia, USA, Mar. 2013,
pp. 113–118. [Online]. Available: http://www.di.ens.fr/∼pouzet/bib/
hscc13.pdf

[19] F. Singhoff, J. Legrand, L. Nana, and L. Marcé, “Cheddar: a flexible
real time scheduling framework,” in SIGAda. New York, NY, USA:
ACM, 2004, pp. 1–8.

[20] W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron,
and M. Stan, “Hotspot: a compact thermal modeling methodology for
early-stage vlsi design,” Very Large Scale Integration (VLSI) Systems,

IEEE Transactions on, vol. 14, no. 5, pp. 501 –513, may 2006.
[21] Docea Power, “Aceplorer,” http://www.doceapower.com/

products-services/aceplorer.html, [Feb. 7, 2014].
[22] A. Vassighi and M. Sachdev, Thermal and power management of

integrated circuits. Springer Science+Business Media, Incorporated,
2006, ch. Thermal and Electrothermal Modeling.

[23] OMAP35x Applications Processor Technical Reference Manual, Texas
Instruments, Apr 2010.

[24] E. Andrade, P. Maciel, G. Callou, and B. Nogueira, “A Methodology for
Mapping SysML Activity Diagram to Time Petri Net for Requirement
Validation of Embedded Real-Time Systems with Energy Constraints,”
in Digital Society, 2009. ICDS ’09. Third International Conference on,
Feb 2009, pp. 266–271.

[25] J. Deantoni and F. Mallet, “ECL: the Event Constraint Language, an
Extension of OCL with Events,” INRIA, Research Report RR-8031,
Jul. 2012. [Online]. Available: http://hal.inria.fr/hal-00721169

[26] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event

Systems. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2006.

