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Abstract. Evolutionary algorithms have received much attention in extracting 

knowledge on high-dimensional micro-array data, being crucial to their success 

a suitable definition of the search space of the potential solutions. In this paper, 

we present an evolutionary approach for selecting informative genes (features) 

to predict and diagnose cancer. We propose a procedure that combines results 

of filter methods, which are commonly used in the field of data mining, to 

reduce the search space where a genetic algorithm looks for solutions (i.e. gene 

subsets) with better classification performance, being the quality (fitness) of 

each solution evaluated by a classification method. The methodology is quite 

general because any classification algorithm could be incorporated as well a 

variety of filter methods. Extensive experiments on a public micro-array dataset 

are presented using four popular filter methods and SVM. 

Keywords: Evolutionary algorithms, Feature Selection, Micro-array Data 

Analysis. 

1   Introduction 

Evolutionary strategies are now an active area of research and a lot of studies 

demonstrate the advantages of their use in several knowledge extraction tasks. In 

particular, recent literature [1][2][3][4] demonstrates their success on micro-array data 

analysis. The micro-arrays provide a view onto cellular organization of life through 

quantitative data on gene expression levels and it is expected that knowledge gleaned 

from micro-array data will contribute significantly to advances in fundamental 

questions in biology as well as in clinical medicine. In particular, these data may be 

used to extract knowledge on the molecular variation among cancer i.e. to build a 

model, namely a classifier, capable of discriminating between different clinical 

outcomes in order to make accurate prediction and diagnosis of cancer. Building such 

a classifier is somewhat problematic since in micro-array datasets the number of 

samples collected is small compared to the number of genes per sample which are 

usually in the thousands. Since it is highly unlikely that thousands of genes have the 

information related to the cancer and using all the genes results in too big 

dimensionality, it is necessary to select some genes highly related to particular classes 

for classification, which are called informative genes. This process is referred to as 

gene selection. It is also called feature selection in machine learning.  



In this paper, we attempt to move away from strictly statistical and data mining 

methods that seem to dominate the current state of art in this area, and try to explore 

how knowledge extraction from gene expressions can be successful carried out by an 

evolutionary strategy. Our approach to micro-array data classification can be viewed 

as a two-stage procedure.  

First, we try to break the barrier of feature selection. We adopt filters, which are 

commonly used in the field of data mining and pattern recognition, for ranking 

features in terms of the mutual information between the features and the class label. 

Then, we combine ranking results in small subsets of predictive genes substantially 

reducing the number of features. These subsets are input to the second stage that 

adopts an evolutionary approach to further select features and precisely classify 

cancer. Specifically, feature selection is formulated as an optimization problem for 

which it is to find the genes that guarantee maximum accuracy in a given 

classification task. A Genetic Algorithm (GA) is used to explore the feature space 

defined in the first stage and look for solutions (i.e. gene subsets) with better 

classification performance. The quality (fitness) of each solution is evaluated by an 

SVM classifier (but any classification algorithm could be incorporated in our 

approach). As a test-bed for evaluating the proposed methodology we choose the 

Leukemia dataset, publicly available at [5]. We demonstrate, with results, that our 

approach is highly effective in selecting small subsets of predictive genes while it 

allows saving time and alleviating computational load.  

Although a number of recent works address the problem of gene selection using a 

GA in conjunction with some classifier [2][6][7], our approach is innovative: instead 

of exploring the whole dataset, the GA looks for solutions in the small gene spaces 

that we defined in the first stage. This way, we can analyze the gene information very 

rapidly. 

The paper is organized as follows. In Section 2, we discuss some related works. 

Section 3 describes the proposed approach, while experiments are reported in Section 

4. In Section 5, we discuss the results and present some concluding remarks. 

2   Related Work 

Recent studies [1][2][3][4] address the problem of gene selection using a standard GA 

which evolves populations of possible solutions, the quality of each solution being 

evaluated by an SVM classifier. GAs have been employed in conjunction with 

different classifiers, such as k-Nearest Neighbor in [6] and Neural Networks in [7]. 

Moreover, evolutionary approaches enable the selection problem to be treated as a 

multi-objective optimization problem, minimizing simultaneously the number of 

genes and the number of misclassified examples [3][4][8]. 

Recent literature [4] shows that evolutionary approaches may benefit of a 

preliminary feature selection step when applied to high dimensional problems such as 

micro-array data analysis. A number of hybrid approaches have been proposed 

[2][3][4] that apply some pre-filtering technique to define suitable gene spaces to be 

further refined by an evolutionary algorithm. Yang et al [9] and Forman [10] 

conducted comparative studies on filter methods, and they found that Information 



Gain and Chi-square are among the most effective methods of feature selection for 

classification. 

3   The Proposed Approach 

We define extracting knowledge from micro-array data the process that selects 

discriminative genes related to classification, trains a classifier and then classifies new 

data using the learned classifier. As previously mentioned, our knowledge extraction 

process has two stages that we describe in the following. 

First Stage: the Search Space Definition. It is common to use some techniques to 

generate a small list of important features in order to learn classifiers that use only a 

small subset of the original dataset. A popular method, which is named filter, is to 

define the feature selection as a preprocessing step that is independent from 

classification. In more detail, a filter method computes a score (ranking) for each 

feature and then selects features according to the scores. However, each filter method 

is able to point out only a peculiar character of the information contained in the data 

at hand, resulting in a feature list that may be not nearly informative. For overcoming 

this problem, we propose constructing M lists of features, that we call Feature Pools 

(FPs), via the combination of M different filter methods. The final objective is to have 

different lists (i.e. FPs) of candidate genes, to be further refined by a genetic 

algorithm. Inspired by our previous work [4], the construction of FPs is carried out 

according the following steps: 

1. M filter processes are carried out separately on the original dataset. This 

results in M lists of ranked features each containing all the features in 

descending order of relevance. 

2. According to a fixed threshold T, we cut the previous lists and consider only 

the T top-ranked features from each list.  

3. To absorb useful knowledge from the above lists, we fuse their information 

by considering the features they share. Specifically, we build M nested 

feature pools FP1  ฀ FP2 … ฀ FPM, where FP1 contains the features shared 

by all the M lists, FP2 the features shared by at least M-1 of the M lists, …, 

FPM-1 the features shared by at least 2 of the M lists. Finally, FPM contains all 

the features belonging to the M lists. 

Second Stage: GA-based Gene Selection and Classification. The second stage 

considers two aspects: how the mechanism of feature selection works and how the 

classifier accuracy is affected by the mechanism. The evolutionary approach we 

propose here is intended for two distinct purposes: 

1. Effective use of a GA that provides rapid local-search capabilities in the 

search space defined at the first stage. 

2. Effective use of SVM that provides high-quality classifiers. 

The key idea is to obtain the benefits from both GA and SVM: the former is used to 

explore the input search space and to discover promising subsets of features (i.e. 

genes) while the latter evaluates them by classification.  



With the GA, individuals are small sets of important features, typically represented 

by a string or a binary array. A population of individuals is randomly initialized at the 

start of the GA. This population undergoes mutation (a bit in an instance is flipped) 

and crossover (two instances create two new instances by splitting both parent bit-

strings) operators, creating a collection of new individuals. This evolution process is 

repeated until a pre-defined number of generations G is reached, resulting in a “best” 

individual that represents the most informative feature subset. 

Our evolutionary strategy considers to separately apply this process on each FP. 

Accordingly, each individual is a binary vector (whose maximum size is M*T), where 

the values “1” and “0” respectively mean that the feature is included or not in the 

individual. Genetic operations are carried out by roulette wheel selection, single point 

crossover, and bit-flip mutation. Taking into consideration previous research [4], we 

assume as fitness function the accuracy of the SVM classifier learnt on the individual. 

With regard to SVM classifier, error estimation is made by using leave-one-out cross 

validation (LOOCV). This choice is justified by the will to pay great attention to the 

classifier accuracy, even if the required computational load is greater than using other 

evaluation methods. 

4   Experimental Analysis 

We report on the successful application of the proposed approach to Leukemia dataset 

[5], which contains 7129 gene expression levels from 72 samples, among which 25 

samples are collected from acute myeloid leukemia (AML) patients and 47 samples 

are from acute lymphoblastic leukemia (ALL) patients. The overall analysis has been 

implemented using the Weka library [11]. 

First Stage. We set the number of filter methods M = 4, the threshold T = 20 and 

choose the following ranking methods: Information Gain, Chi-squared, Symmetrical 

Uncert, and One Rule. The feature selection process (section 3) results in the 

following feature pools: FP1 (composed of 12 features), FP2 (18 features), FP3 (21 

features), and finally FP4 (29 features).  

Second Stage. Each FPi (i = 1, 2, …, 4) is used as input to the GA. In order to find 

an efficient setting of the algorithm in the considered domain, we operated a 

performance analysis by considering different values of the following parameters: (i) 

number of generations, (ii) population size, (iii) probability of crossover, and (iv) 

probability of mutation. Specifically, the analysis was carried on according to two 

distinct phases:  

A. We test the GA/SVM behavior as parameters (i) and (ii) change, while parameters 

(iii) and (iv) assume values consistent with the literature; 

B. We test the GA/SVM behavior as parameters (iii) and (iv) change, while 

parameters (i) and (ii) assume the best results found in the previous phase A. 

This pairing is justified because, in the literature, wide discordances can be found 

between the values chosen for parameters (i) and (ii). As well, parameters (iii) and 

(iv) typically assume values in a range that we consider in our analysis. Since the 

evolutionary algorithm performs a stochastic search, in both phases we consider the 

average results over a number P = 10 of trials. 



Phase A. We tested the performance of GA/SVM as the parameters (i) number of 

generations and (ii) population size change, by considering each combination of the 

values of these two parameters. Specifically, values considered for parameters are as 

follows: (i) number of generations: 10, 20, 30, 50, and 100; (ii) population size: 10, 

20, 30, and 50; (iii) probability of crossover = 1; (iv) probability of mutation = 0.01. 

Tables (1-4) show results on each FPi, in terms of classification accuracy and feature 

subset size (in brackets). Derived from Tables (1-4), Figures (1-4) show the 

interpolation surface expressing the global trend of the average accuracy and average 

subset size (y-axis) vs. the number of generation (x-axis) and the population size (z-

axis). Different colours indicate different ranges of values (shown in the enclosed 

legends) in order to better evaluate changes respectively occurring in the average 

accuracy and in the average subset size. With regard to computational load, we don’t 

show the relative results explicitly, but we consider them in the subsequent 

discussion. 

Table 1.  Performance of GA/SVM on feature pool FP1  

FP1 

Avg. accuracy 

(avg size) 

Population size 

10 20 30 50 

G
en

er
at

io
n
s

 

10 0.9639 (6) 0.9778 (5.4) 0.9806 (4.8) 0.9861 (4.6) 

20 0.9694 (6.2) 0.9778 (5.6) 0.9819 (4.5) 0.9861 (4) 

30 0.9694 (6.2) 0.9778 (5.4) 0.9819 (4.3) 0.9861 (4) 

50 0.9681 (5.1) 0.9806 (4.7) 0.9819 (4.3) 0.9861 (4) 

100 0.9694 (6.2) 0.9778 (5.4) 0.9833  (4) 0.9861 (4) 

 

 

Fig. 1. Performance of GA/SVM on feature pool FP1 

As regards the number of generations, we notice significant results for 30-50 

iterations. Going on up to 100 iterations causes some improvement only in one run 

out of 10, while computational load increases in accordance to the number of 

generations. Considering the population size, we observe that best results are obtained 

when the value assumed by this parameter is 30 or 50. Values less than 30 make the 

algorithm to converge to a local optimum, while values greater than 50 were not 

considered for two reasons: the average accuracy and average size of the subset seem 

to stabilize when the value assumed by this parameter is 30 as well, exceeding 30, 

computational load increases considerably. 



Table 2.  Performance of GA/SVM on feature pool FP2  

FP2 

Avg. accuracy 

(avg size) 

Population size 

10 20 30 50 

G
en

er
at

io
n
s

 

10 0.9778 (8) 0.9889 (7.6) 0.9875 (6.3) 0.9861 (5.8) 

20 0.9778 (8) 0.9889 (6.6) 0.9889 (5.5) 0.9889 (5.6) 

30 0.9778 (8) 0.9889 (6.2) 0.9903 (5.1) 0.9889 (5.6) 

50 0.9778 (8) 0.9875 (5.3) 0.9917 (4.7) 0.9903 (5) 

100 0.9778 (8) 0.9917 (5) 0.9917 (4.6) 0.9917 (4.8) 

 

  

Fig. 2. Performance of GA/SVM on feature pool FP2 

Table 3.  Performance of GA/SVM on feature pool FP3  

FP3 

Avg. accuracy 

(avg size) 

Population size 

10 20 30 50 

G
en

er
at

io
n
s

 

10 0.9833 (9.6) 0.9889 (7.8) 0.9986 (6.3) 0.9972 (5.8) 

20 0.9833 (9.2) 0.9889 (7) 0.9986 (5.5) 1 (5.8) 

30 0.9833 (9.2) 0.9889 (6.8) 0.9986 (5) 1 (5.4) 

50 0.9806 (8.5)  0.9875 (5.8) 0.9986 (4.3) 0.9972 (4.3) 

100 0.9833 (9.2) 0.9889 (6.6) 1 (4.3) 1 (3.6) 

 

 



Fig. 3. Performance of GA/SVM on feature pool FP3 

Table 4.  Performance of GA/SVM on feature pool FP4  

FP4 

Avg. accuracy 

(avg size) 

Population size 

10 20 30 50 

G
en

er
at

io
n
s

 

10 0.9861 (9.4) 0.9861 (7.4) 0.9889 (9.2) 1 (9.2) 

20 0.9889 (9.2) 0.9861 (7.2) 0.9889 (9.2) 1 (7.6) 

30 0.9889 (9.2) 0.9861 (7) 0.9889 (9.2) 1 (6.8) 

50 0.9875 (10.1) 0.9889 (9.2) 0.9903 (5.9) 0.9958 (6.1) 

100 0.9889 (9.2) 0.9889 (6.6) 0.9903 (5.7) 1 (4.8) 

 

  

Fig. 4. Performance of GA/SVM on feature pool FP4 

Phase B. We tested the performance of GA/SVM as the parameters (iii) probability 

of crossover and (iv) probability of mutation change, by considering each 

combination of the values of these two parameters. Values considered for parameters 

(iii) and (iv) are respectively: (iii) 0.6, 0.8, 1 and (iv) 0.005, 0.01, 0.02, 0.03. 

According to the results obtained in the phase A, we set (i) number of generations = 

50 and (ii) population size = 30.  

Tables (5-8) show results on each FP, in terms of classification accuracy and 

feature subset size (in brackets). Again, figures (5-8) show the same results using 

charts (average accuracy and average subset size on the y-axis,  probability of 

mutation on the x-axis, and probability of crossover on the z-axis). 

Considering the parameter probability of crossover, we did not achieve significant 

variations as values change; however we find the best results in correspondence to 

value 1. Finally, as regards the parameter probability of mutation, we notice that 

increasing values correspond to better results on average. In particular, the value 0.02 

gives good results considering both accuracy and dimensionality and, in addition, 

exceeding 0.02 computational load increases considerably. 

Table 5.  Performance of GA/SVM on feature pool FP1  

FP1 

Avg. accuracy Probability of crossover 



(avg size) 0.6 0.8 1 
P

ro
b

. 
o

f

 

 m
u
ta

ti
o

n

 

0.005 0.9778 (4.2) 0.9833 (5.4) 0.9833 (4.2) 

0.01 0.9806 (4) 0.9861 (4.6) 0.9819 (4.3) 

0.02 0.9861 (4) 0.9861 (4) 0.9861 (4) 

0.03 
0.9861 (4) 0.9861 (4) 0.9861 (4) 

 

  

Fig. 5. Performance of GA/SVM on feature pool FP1 

Table 6.  Performance of GA/SVM on feature pool FP2  

FP2 

Avg. accuracy 

(avg size) 

Probability of crossover 

0.6 0.8 1 

P
ro

b
. 
o

f

 

 m
u
ta

ti
o

n

 

0.005 0.9861 (6.4) 0.9889 (7.8) 0.9889  (5) 

0.01 0.9917 (6.4) 0.9889 (5.8) 0.9917 (4.7) 

0.02 0.9917 (5) 0.9944  (5) 0.9972 (4.6) 

0.03 0.9944 (4.2) 0.9972 (5.8) 0.9944 (4.4) 

 

  



Fig. 6. Performance of GA/SVM on feature pool FP2 

Table 7.  Performance of GA/SVM on feature pool FP3  

FP3 

Avg. accuracy 

(avg size) 

Probability of crossover 

0.6 0.8 1 

P
ro

b
. 
o

f

 

 m
u
ta

ti
o

n

 

0.005 0.9944 (5.8) 0.9917 (5.4) 0.9917 (5.2) 

0.01 0.9972 (4.4) 0.9972 (4.6) 0.9986 (4.3) 

0.02 0.9972 (4.4) 0.9972 (5.4) 0.9944 (5.4) 

0.03 0.9972 (5.2) 0.9944 (4.4) 0.9972 (4.2) 

 

  

Fig. 7. Performance of GA/SVM on feature pool FP3 

Table 8.  Performance of GA/SVM on feature pool FP4  

FP4 

Avg. accuracy 

(avg size) 

Probability of crossover 

0.6 0.8 1 

P
ro

b
. 
o

f

 

 m
u
ta

ti
o

n

 

0.005 0.9917 (8.2) 0.9944 (6.8) 0.9944 (7.6) 

0.01 0.9944 (6.6) 0.9972 (6.2) 0.9903 (5.9) 

0.02 0.9972 (6.4) 0.9944 (5.8) 0.9972 (5.6) 

0.03 0.9972 (6.2) 1 (5.6) 0.9972 (6.2) 

 



 

Fig. 8. Performance of GA/SVM on feature pool FP4 

5   Discussion and Concluding Remarks 

First, it is important to notice that the parameter values we consider as optimal, 

especially regarding the number of generations and the population size, are smaller 

than the values commonly used in other methods discussed in the literature, with 

consequent time saving and computational load saving. Because our experiments 

result in excellent fitness, we can assert that the evolutionary approach we propose 

allows us to use a GA in a both effective and efficient manner: small subsets of 

predictive genes are selected with a reduced computational load. This validates the 

process of building FPs that reduce the dimensionality of the initial problem by 

discarding redundant or irrelevant features. 

With regard to FPs construction, a basic question is how defining the most 

effective search space for the GA. Combining valuable results from different ranking 

methods allows us to achieve good results. However, features common to all ranking 

methods (i.e. the features belonging to FP1) define a search space that is too small: the 

performance of GA/SVM achieves 98,6% of accuracy and does not increase when the 

search is refined by an additional number of generations. When this search space is 

enlarged by adding genes selected by three, two and just one method, our approach 

shows an excellent performance, not only at providing a very good average accuracy, 

but also with respect to the number of selected features and the computational cost. In 

particular, the pool FP3 seems to define the most effective search space for the GA.  

A further question we want to point out is that, as presented in Table 1-8, we 

consider the average results obtained in the analysis. But, during our study, we 

noticed that the difference between average values and best values was very scanty, 

and it means that results are not outcomes of a particularly lucky run, but they derive 

from a valid and effective behavior of the evolutionary method. 

Table 9 summarizes the results we obtained using the proposed approach with the 

results of three state-of-art methods that use a GA as feature selection technique. To 

evaluate the results we use the conventional criteria, that is the classification accuracy 

in terms of the rate of correct classification (first number) and the size of the subset 

i.e. the number of selected genes (the number in parenthesis). For our approach, we 

choose to present the data obtained using FP3. The maximum classification rate we 



obtain is 1 using 3 genes while the corresponding average classification rate is 1 and 

the corresponding average dimension is 3.6 (see Table 3 for details). The same 

performance is achieved by [1] [2] [8], even if the number of genes selected by [1] [2] 

[8] is greater than the one obtained by our method. 

As feature work, we plan to extend our study by considering different ranking 

methods, as well as different values of the threshold used to cut-off each ranked list, 

in order to gain more insight on the evolutionary search space definition. Moreover, 

the proposed approach will be validated on different micro-array datasets. 

Table 9.  The proposed method versus three state of the art methods. 

Studies Classification rate Subset size 

The proposed method 1 (3) 

[1] 1 (6) 

[8] 1 (4) 

[2] 1 (25) 
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