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Abstract. Partial orders are a fundamental mathematical structure capable of rep-

resenting true concurrency and causality on a set of atomic events. In this paper

we study two mathematical formalisms capable of the compressed representation of

sets of partial orders: Labeled Event Structures (LESs) and Conditional Partial Order

Graphs (CPOGs). We demonstrate their advantages and disadvantages and propose

efficient algorithms for transforming a set of partial orders from a given compressed

representation in one formalism into an equivalent representation in another formal-

ism without the explicit enumeration of each scenario. These transformations reveal

the superior expressive power of CPOGs as well as the cost of this expressive power.

The proposed algorithms make use of an intermediate mathematical formalism, called

Conditional Labeled Event Structures (CLESs), which combines the advantages of

LESs and CPOGs. All three formalisms are compared on a number of benchmarks.

1 Introduction

Partial orders – the protagonists of this paper – play a fundamental role in the concurrency

theory. The concept has a very simple definition: a partial order is a reflexive, antisymmetric

and transitive relation ≤ on a set of elements S. Two distinct elements a, b ∈ S can be either

ordered (a ≤ b or b ≤ a) or concurrent (a 6≤ b and b 6≤ a). Partial orders arise in numerous

application areas such as model checking, process mining, concurrent programming, and

VLSI design to name but a few. In this paper we do not focus on a particular application

area, however, we use partial orders coming from the VLSI design domain as real-life

benchmarks (specifically we use partial orders corresponding to processor instructions and

on-chip communication protocols).

A single partial order can capture a single behavioral scenario of a modeled system.

However, real-life systems rarely exhibit just a single scenario; in fact, we routinely design

systems exhibiting millions of scenarios, each being a partial order defined on a subset of

events that may occur in a system. How do we represent all of those partial orders? One

can, of course, simply list them explicitly but this is clearly not a scalable solution – 6.6

trillion different partial orders can be defined on just 10 events!

In this paper we study two mathematical formalisms to compactly represent sets of

partial orders: Labeled Event Structures (LESs) [1] and Conditional Partial Order Graphs

(CPOGs) [2]. The two formalisms are significantly different from each other, hence one

cannot directly use them together: conversion from one formalism to another without an

intermediate uncompression step is non-trivial. As will be demonstrated in Section 4, dif-

ferent formalisms may be preferable in different application domains. For example, LESs

can typically be obtained from Petri Net specifications via unfolding, while CPOGs nat-

urally come from hardware specifications and implementations, where partial orders are

pre-encoded with Boolean vectors (low-level signals, instruction opcodes, etc.).

⋆ This research was done while the author was preparing his thesis at INRIA and LSV, École Nor-

male Supérieure de Cachan and CNRS, France.



This brings us to the main contribution of this paper: we present two direct transforma-

tion algorithms (Section 5) for converting compressed sets of partial orders from LESs to

CPOGs and from CPOGs to LESs without an intermediate uncompression. The presented

transformations reveal the superior expressive power of CPOGs as well as the cost of this

expressive power: CPOGs are often more demanding from the algorithmic complexity point

of view. The proposed algorithms make use of a new mathematical formalism, called Con-

ditional Labeled Event Structures (CLESs), which combines the advantages of LESs and

CPOGs. The CLES formalism makes it possible to directly combine sets of partial orders

represented in LESs and CPOGs, thereby improving their interoperability.

To the best of the authors’ knowledge, no other mathematical model has been directly

used for the task of compressed representation of sets of partial orders, hence we only build

one (bidirectional) bridge between LESs and CPOGs. If one would like to use other models

for this task (for example Petri Nets or Message Sequence Charts), it is possible to reuse

existing bridges to connect to the body of our work, e.g., one can obtain a LES from a Petri

Net via its unfolding [3].

2 Preliminaries

This section introduces two formalisms that compactly represent partial orders: Labeled

Event Structures [1] and Conditional Partial Order Graphs [2].

2.1 Labeled Event Structures

Event Structures1 can represent several execution scenarios of a system by means of so

called configurations. We study their widely used extension, called Labeled Event Struc-

tures, whose events are labeled with actions over a fixed alphabet L.

Definition 1. A labeled event structure (LES) over alphabet L is a tuple E = (E,≤,#, λ)
where E is a set of events; ≤ ⊆ E × E is a partial order (called causality) satisfying the

property of finite causes, i.e. ∀e ∈ E : |{e′ ∈ E | e′ ≤ e}| < ∞; # ⊆ E × E is an

irreflexive symmetric relation (called conflict) satisfying the property of conflict heredity,

i.e. ∀e, e′, e′′ ∈ E : e # e′ ∧ e′ ≤ e′′ ⇒ e # e′′; and λ : E → L is a labeling function.

Remark 1. Note that in most cases one only needs to consider reduced versions of relations

≤ and #, which we will denote ≤r and #r, respectively. Formally, ≤r (which we call direct

causality) is the transitive reduction of ≤, and #r (direct conflict) is the smallest relation

inducing # through the property of conflict heredity. In practice |≤r| and |#r| are often a

lot smaller than |≤| and |#|, however, in the worst case |≤r| = Θ(|≤|) and |#r| = Θ(|#|),
therefore the speed up gained by using the reduced relations does not affect the worst case

performance of the presented algorithms.

A configuration is a computation state of a LES. It is represented by a set of events

that have occurred in the computation. If an event is present in a configuration, then so

must all the events on which it causally depend. Moreover, a configuration does not contain

conflicting events.

Definition 2. A configuration of a LES E = (E,≤,#, λ) is a set C ⊆ E that is causally

closed, i.e. e ∈ C ⇒ ∀e′ ≤ e : e′ ∈ C, and conflict-free, i.e. e ∈ C and e#e′ imply e′ 6∈ C.

The set of maximal (w.r.t. set inclusion) configurations of E is denoted by Ω(E).

In this paper we only deal with LESs whose configurations do not contain two events

with the same label. With such a restriction one can associate to every configuration C a
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Fig. 1: Two Labeled Event Structures representing the same set of partial orders.

partial order whose elements are λ(C) (where λ is lifted to sets) and causality is inherited

from ≤. We will denote such partial order as π(C) and lift π to sets of configurations.

The local configuration [e] of an event e is a set of events on which it causally depends,

i.e. [e] , {e′ ∈ E | e′ ≤ e}; and its future ⌊e⌋ is the set of events that causally depend on

it, i.e. ⌊e⌋ , {e′ ∈ E | e < e′}. Since a configuration together with the causality relation

form a partial order, one can consider a LES E as a compressed representation of the set of

partial orders induced by the maximal configurations Ω(E).
Fig. 1 shows an LES E1 defined on alphabet L = {a, b, c, d, e} which contains four

maximal configurationsC1-C4. Note that throughout this paper we only show direct causal-

ity (by arrows) and direct conflicts (by dashed lines) on diagrams for clarity (events that

belong to different configurations C1-C4 are all in conflict pairwise). It can be observed

that not much compression is achieved by E1. The LES E2 represents the same set of partial

orders, i.e. π(Ω(E1)) = π(Ω(E2)), and it is more compact.

2.2 Conditional Partial Order Graphs

A Conditional Partial Order Graph (CPOG) is a quintuple H = (V,A,X, φ, ρ), where V

is a set of vertices, A ⊆ V × V is a set of arcs between them, and X is a set of operational

variables. An opcode is an assignment (x1, x2, . . . , x|X|) ∈ {0, 1}|X| of these variables;

X can be assigned only those opcodes which satisfy the restriction function ρ of the graph,

i.e. ρ(x1, x2, . . . , x|X|) = 1. Function φ assigns a Boolean condition φz to every vertex

and arc z ∈ V ⊎A of the graph.

Fig. 2 (top) shows an example of a CPOG containing 5 vertices and 6 arcs; there are

two operational variables x and y; the restriction function is ρ = 1, hence, all four opcodes

(x, y) ∈ {0, 1}2 are allowed. Vertices and arcs labeled by 1 are called unconditional (con-

ditions equal to 1 are not depicted in the graph). The purpose of vertex and arc conditions

is to ‘switch off’ some vertices and/or arcs in the graph according to the given opcode. This

makes CPOGs capable of containing multiple projections as shown in Fig. 2 (bottom). The

leftmost projection is obtained by keeping in the graph only those vertices and arcs whose

conditions evaluate to Boolean 1 after substitution of the operational variables x and y with

Boolean 0. Hence, vertex e disappears, because its condition evaluates to 0: φe = x∧y = 0.

Arcs {c → d, d → c} disappear for the same reason. Note also that although the condition

on arc a→ e evaluates to 1 (in fact it is constant 1) the arc is still excluded from the projec-

tion because one of the vertices it connects (vertex e) is excluded and an arc cannot appear

in a graph without one of its adjacent vertices.

Each projection is treated as a partial order specifying a behavioral scenario of a mod-

eled system. Potentially, a CPOG H = (V,A,X, φ, ρ) can specify an exponential number

1 In this article, we restrict to prime event structures.
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Fig. 2: Conditional Partial Order Graph and the corresponding set of partial orders

of different partial orders on events V according to 2|X| possible opcodes. We will use

notation H|ψ to denote a projection of a CPOG H under an opcode ψ = (x1, x2, . . . x|X|).
A projection H|ψ is called valid iff opcode ψ is allowed by the restriction function, i.e.

ρ(x1, x2, . . . x|X|) = 1, and the resulting graph is acyclic. The latter requirement guar-

antees that the graph defines a partial order. A CPOG H is well-formed iff every al-

lowed opcode produces a valid projection. The graph H in Fig. 2 is well-formed, because

H|x,y=0, H|x=0,y=1, H|x=1,y=0 and H|x,y=1 are valid. A well-formed graph H therefore

defines a set of partial orders P (H).

Complexity. The original definition of CPOG complexity [2] is simply the total count

of literals used in all the conditions:
∑
e∈V ⊎A |φe|, where |φ| denotes the count of literals

in condition φ, e.g., |x ∧ y| = 2 and |1| = 0. The complexity of the CPOG shown in Fig. 2

is thus equal to 10 according to this definition. We argue that this definition is not very

useful in practice, because it does not take into account the fact that some of the conditions

coincide. Intuitively, since φb = φc = φd = x∨y we can compute condition x∨y only once

and reuse the result three times. Furthermore, one can notice that conditions φb = x ∨ y
and φe = x ∧ y are not very different from each other; in fact φb = ¬φe, therefore having

computed φe we can efficiently compute φb by a single inversion operation. In Section 4

we introduce an improved measure of complexity (based on Boolean circuits) which is free

from the above shortcomings.

3 Enriched and Conditional LESs

A LES can represent several partial orders by means of its maximal configurations. CPOGs

provide an additional mapping between partial orders and the corresponding opcodes, that

is, given an opcode ψ satisfying the restriction function of a well-formed CPOG H , one

can obtain the corresponding partial order as a projection H|ψ . In the next subsection we

show that a similar correspondence between opcodes and partial orders can be established

by LESs if we enrich them with additional information on conflict resolution.

3.1 Enriched Labeled Event Structures

Partial orders are represented by maximal configurations of a LES, therefore to extract a

partial order from a LES one needs to resolve event conflicts in a certain way. We enrich

LESs with a total order on the conflicts and restrict the way conflicts can be resolved,

leading to Enriched Labeled Event Structures.

Definition 3. An Enriched Labeled Event Structure (ELES) over alphabet L is a tuple E =
(E,≤,#, λ,L,V) where (E,≤,#, λ) is a labeled event structure, L is a total order on #
and V is a set of vectors of length |L|.



A conflict solver is a vector v ∈ {0, 1}|L| indicating which event is chosen in each

conflicting pair (conflict L[i] is resolved by v[i]’s event in the conflict). Not every conflict

solver is acceptable as illustrated in Fig. 3: any solver that chooses d2 over d1 must also

choose c1, because c2 is in future of d1; therefore vector 111 is disallowed. This is not the

only restriction. If an event is a part of more than one conflict, whenever we choose it w.r.t.

one conflict, we must also choose it w.r.t. to the others. Let E denote events that are not

selected by a conflict solver v, i.e. E = {e ∈ E | ∃i, j : v[i] = j ∧ L[i][1 − j] = e}, the

conflict solver is valid iff it generates a maximal configuration, i.e. E\⌊E⌋ ∈ Ω(E). The

set V in the definition of ELESs contains all valid conflict solvers.
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Fig. 3: An ELES and its conflict solvers

Example 1. Consider the ELES shown in Fig 3. If event e is chosen (v[1] = 0), the resolu-

tion of the other conflicts becomes unimportant since the configuration obtained is already

maximal. However if event b is chosen (v[1] = 1), other conflicts need to be resolved, hence

V = {000, 001, 010, 011, 100, 101, 110}.

The following proposition characterizes the set of valid conflict solvers for a given

labeled event structure (the proof can be found in [4]).

Proposition 1. Let E = (E,≤,#, λ,L,V) be such that for every v ∈ V , if v[i] = j and

L[i][j] = e, then ∀h, k : L[h][k] = e implies v[h] = k and ∀e′ ∈ [e], h, k : L[h][k] = e′

implies v[h] = k. Then V is a set of valid conflict solvers.

The above result shows how to compute a set of valid conflicts solvers for a LES and

therefore each LES can be easily extended into the corresponding ELES. This means that

both LESs and CPOGs can be used when one needs to store partial orders in a compressed

form and access them by providing the corresponding opcodes. In the rest of the paper we

will focus on LESs; however, all presented results also hold for their enriched counterparts.

3.2 Conditional Labeled Event Structures

The acyclicity of LESs often introduces redundancy in events: vertex c from the CPOG in

Fig. 2 needs to be represented by two events (c1 and c2) in the LES of Fig. 3. In order to

avoid this redundancy, we follow ideas of CPOGs and label elements of a LES (events and

relations) by Boolean conditions in order to represent several LESs with one Conditional

Labeled Event Structure. The next section shows that CLESs are of particular interest when

transforming LESs into CPOGs and vice versa.

Definition 4. A Conditional Labeled Event Structure (CLES) over alphabet L is a tuple

E = (E,≤,#, λ,X, φ, ρ) where E are events; ≤ is a set of arcs; # represents conflicts;

λ labels events; X is a set of operational variables; φ assigns Boolean conditions to E,≤
and #; and ρ is the restriction function.
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Fig. 4: Conditional Labeled Event Structure.

A well-formed CLES is such that its projection on a valid opcode (allowed by the re-

striction function) generates a LES, i.e. ≤ becomes acyclic. CLESs generalize both CPOGs

and LESs: if conflicts are dropped we get a CPOG; if the structure is acyclic and conditions

are dropped, we get a LES.

The CLES in Fig. 4 represents the same partial orders as the CPOG and the LES in

Figs. 2 and 3. If we compare it to the CPOG, a conflict is introduced, but the number

of Boolean conditions is reduced. Comparing it to the LES, one can see that not only

the number of events is reduced, but also the number of conflicts. The cardinality of the

causality relation is preserved, but the information about Boolean labeling needs to be

stored, i.e. φc≤d = x and φd≤c = y. In the next section we introduce a complexity measure

for such conditional, or parameterized, structures that we will use to compare (Enriched)

LESs, CPOGs and CLESs to each other.

4 Parameterized Structures

The formalisms we presented in the previous sections can be used for the compressed

representation of sets of partial orders. The key feature of these formalisms is the support

for conditional elements, i.e. elements labeled with Boolean conditions.

Definition 5. A mathematical structure over a set of elements S is called a parameterized

structure if the elements are labeled with Boolean conditions φ : S → Φ, where Φ is a set

of predicates (Boolean functions) on X , that is Φ ⊆ X → {0, 1}.

A CPOG is a parameterized structure whose elements are vertices and arcs. Events and

causality/conflict relations are elements of both LESs and CLESs, but every LES element

is labeled by 1 while CLES elements can be labeled by arbitrary conditions.

Below we define a complexity measure for parameterized structures that we will use to

compare compactness of CPOGs, LESs and CLESs in our experiments.

Complexity measure. Instead of treating each predicate in Φ separately let us construct

a Boolean circuit [5] that computes all of them together and makes use of shared intermedi-

ate results. This is exactly what happens in practice regardless of whether a parameterized

structure is used for verification purposes or in hardware synthesis. The decoding complex-

ity of a predicate set Φ is the number of variables in Φ plus the number of gates in the

smallest circuit2 computing all predicates.

Definition 6. The Complexity of a parameterized structure with predicate set Φ on a set of

elements S is the decoding complexity of Φ plus the number of elements in S.

Fig. 5 shows a circuit that computes predicates in Φ = {1, x ∨ y, x ∧ y, x, y, x, y}
required for the CPOG shown in Fig. 2. Note that trivial conditions 1, x and y require no

2 In our experiments we restrict the number of inputs of each gate to 2. Since finding the smallest

circuit is a very hard problem, we use approximation of the circuit complexity measure [6].



computation at all and are therefore omitted in the diagram. We do not need a circuit to

compute conditions of a LES which are always 1; only a single NAND gate is required for

the CLES in Fig. 4. Therefore, the CPOG complexity is considered to be equal to 17 (2

variables + 4 gates + 5 vertices + 6 arcs); the LES complexity is 16 (7 events + 6 direct

causality arcs + 3 direct conflicts); finally, the CLES complexity is 15 (2 variables + 1 gate

+ 5 vertices + 6 direct causality arcs + 1 direct conflict).
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y

Fig. 5: Circuit computing conditions for CPOG in Fig. 2.

Comparison of Parameterized Structures. We compare LESs, CPOGs and CLESs

on a number of benchmarks coming from the VLSI design domain, in particular, on-chip

communication controllers [7] and processor microarchitectures [8]. We observed that a

CPOG often has a lower complexity than a corresponding LES, however, the opposite can

also be true. Since every CPOG is a CLES with # = ∅ and every LES is a CLES with

φ = 1, CLESs have at most the same complexity as CPOGs and LESs.

Example 2. Phase encoders [7] are communication controllers capable of generating all

permutations of n events. They are badly handled by acyclic structures as can be seen

in Fig. 6 (right). The LES for a phase encoder with n = 3 has complexity 33 while its

corresponding CPOG has complexity 15. In general, the complexity of CPOGs for phase

encoders grows quadratically with n, while the complexity of LESs grows exponentially:

one can see that the LES for a phase encoder of size n must have n! events on its lowest

level. In fact, a LES must contain at least as many events as there are partial orders in it.
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Fig. 6: Phase encoder for n = 3 represented by a CPOG (left) and a LES (right).

Example 3. Decision trees [9] are binary trees that can be used to model choices and their

consequences. LESs for decision trees are smaller than CPOGs as the number of direct

conflicts is smaller than the decoding complexity for conditions. This is illustrated in Fig. 7

where the LES on the right has complexity 16, while the complexity of the CPOG is 21.

Asymptotically the complexity of both LESs and CPOGs grows linearly with the size of

decision trees, so in this example LESs are better by just a constant factor. In general, as

we will demonstrate in Section 5, the complexity of a CPOG never exceeds the complexity

of the corresponding LES by more than just a constant factor.
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Fig. 7: A decision tree represented by a CPOG (left) and a LES (right).

Example 4. Trees of phase encoders are a combination of decision trees of height h and

phase encoders with n actions: after h choices are made, all permutations of n events are

possible. CLESs are strictly smaller than both CPOGs and LESs in this example, as shown

in Fig. 8: the CPOG, the LES and the CLES have complexity 35, 52, and 30, respectively.
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Fig. 8: A tree of phase encoders represented by a CPOG, a LES and a CLESs.

Table 1 provides a summary of our experimental comparison of the complexity of

CPOGs, LESs and CLESs. We compressed different sets of partial orders: phase encoders,

decision trees, trees of phase encoders, as well as several sets of processor instructions

(from ARM Cortex M0 and Intel 8051 processors [8]).

5 Transformations

This section presents the main contribution of this work: algorithms for transforming LESs

into CPOGs and vice versa without performing an intermediate uncompression step. Note

that both algorithms make use of CLESs as an intermediate representation, which is not

essential but convenient. The proofs of the results in this section can be found in [4].

From LESs to CPOGs. Every LES can be seen as an acyclic CLES where vertices and

arcs are labeled by 1. If conflicts are removed from the CLES, an acyclic CPOG is obtained

which can then be folded to remove redundant vertices. In order to preserve the information

about conflicts, conflicting events need to be labeled by Boolean conditions in such a way

that they cannot belong to the same projection. Proposition 1 shows that whenever an event

is selected in one conflict, it must be selected in all other conflicts it participates in, along



Complexity

Name Scenarios CPOG LES CLES

24 24 158 24

Phase encoder 120 35 825 35

720 48 5001 48

8 44 39 36

Decision tree 16 97 76 76

32 195 156 156

16 70 108 58

Trees of phase encoders 29 43 158 41

32 136 220 114

Complexity

Name Scenarios CPOG LES CLES

5 26 28 26

6 27 35 27

7 26 38 26

ARM Cortex M0 8 28 43 28

9 28 46 28

10 29 46 29

11 30 50 30

5 34 48 34

6 35 52 35

7 36 56 36

Intel 8051 8 37 56 37

9 46 71 46

10 47 81 47

11 51 90 51

Table 1: Experimental results

with all of its causal predecessors. This can be encoded in the restriction function of the

resulting CPOG as follows3:

ρ = (
∧

e#f

¬φe ∨ ¬φf )(
∧

e≤f

φf ⇒ φe) (1)

For the example shown in Fig. 3 this generates the following restriction function:

(vb ⇒ va) ∧ (ve ⇒ va) ∧ (vc1 ⇒ vb) ∧ (vd1 ⇒ vb) ∧ (vd2 ⇒ vc1) ∧ (vc2 ⇒ vd1) ∧

(ve ∨ vb) ∧ (vc1 ∨ vc2) ∧ (vd1 ∨ vd2)

By employing a SAT solver one can easily check that the above is satisfied by the following

assignments which correspond to maximal configurations of the LES:

va = vb = vc1 = vd1 = 1, vc2 = vd2 = ve = 0

va = vb = vd1 = vc2 = 1, vc1 = vd2 = ve = 0

va = vb = vc1 = vd2 = 1, vc2 = vd1 = ve = 0

va = ve = 1, vb = vc1 = vc2 = vd1 = vd2 = 0

However not only maximal configurations satisfy the function, for example, the empty

configuration clearly satisfies it as well: va = vb = vc1 = vc2 = vd1 = vd2 = ve = 0.

Since we do not want such non-maximal configurations to be allowed by the restriction

function, we need to further elaborate it. A configuration is maximal if and only if, for every

event e ∈ E one of the following conditions holds: (i) event e belongs to the configuration;

(ii) there exist an event f which belongs to the configuration and prevents e. The restriction

function (1) can now be refined to allow only maximal configurations:

ρ = (
∧

e#f

¬φe ∨ ¬φf )(
∧

e≤f

φf ⇒ φe)(
∧

e∈E

φe ∨
∨

e#f

φf ) (2)

Coming back to the example in Fig. 3, the refined restriction function (2) has only four

satisfying assignments that represent the four maximal configurations of the LES.

Once conditions are assigned to events, arcs also need to be labeled before folding the

result into a CPOG: we label each arc by the conjunction of the conditions of the events

it connects to make sure an arc appears only if both of the events do. The resulting CLES

may contain several events labeled by the same action, which is redundant for CPOGs.

Such events can be merged and the resulting condition is the disjunction of conditions of

the original events. This transformation method is summarized in Algorithm 1.



Algorithm 1 Transforming a LES into a CPOG

Require: E = (E,≤,#, λ) and a set of Boolean variables {x1, . . . , x|E|}
Ensure: H = (V,A,X, φ, ρ) such that P (H) = Ω(E)
1: V = E,A = ≤
2: ∀v ∈ V : φv = xv

3: ∀e = (v1, v2) ∈ A : φe = v1 ∧ v2
4: while ∃v1, v2 ∈ V : λ(v1) = λ(v2) do (for v 6∈ V )

5: V = V \{v1, v2} ∪ {v}
6: ∀v′ ∈ V : v′ ≤ v ⇔ v′ ≤ v1 ∨ v′ ≤ v2
7: ∀v′ ∈ V : v ≤ v′ ⇔ v1 ≤ v′ ∨ v2 ≤ v′

8: φv = φv1 ∨ φv2

9: ρ = (
∧

e#f

¬φe ∨ ¬φf )(
∧

e≤f

φf ⇒ φe)(
∧

e∈E

φe ∨
∨

e#f

φf )

10: return H = (V,A,X, φ, ρ)

The scenarios represented by the CPOG obtained by merging events coincide with the

maximal configurations of the LES.

Theorem 1. Given an LES E = (E,≤,#, λ), Algorithm 1 constructs a CPOG H =
(V,A,X, φ, ρ) such that P (H) = π(Ω(E)).

Proof. The algorithm transforms the LES E into a CLES G and the later into a CPOG H .

The proof shows that i) projections of G coincide with maximal configurations of E ; and

ii) G|ψ = H|ψ for any valid opcode ψ. The complete proof can be found in [4].

The complexity of the CPOG constructed by this procedure is linear with respect to the

size of the original LES, as stated by the following theorem.

Theorem 2. Given an LES E = (E,≤,#, λ), Algorithm 1 constructs a CPOG H =
(V,A,X, φ, ρ) of complexity Θ(|E|).

Proof. The resulting CPOG contains at most the same number of vertices and arcs as the

original LES. Moreover, |X| = |E|, |φ| = O(|E|), and the size of the restriction function ρ

is linear with respect to |E| as seen from (2). The complete proof can be found in [4].

From CPOGs to LESs. In order to transform a CPOG into an LES, the graph is un-

folded (in order to obtain an acyclic structure) while keeping conditions that will be re-

placed by conflicts in the final LES. For this, a CLES is constructed as an intermediate

structure. We start from an empty CLES (that containing no events) and at each iteration,

we compute the set of possible extensions. To decide if an instance of vertex a ∈ V is a

possible extension, we need to find a set of predecessor events P ⊆ E such that (i) the

vertex is active; (ii) instances of its predecessors and their corresponding arcs are active;

(iii) if an event is not a predecessor, then either it is not active or its corresponding arc is not

active; (iv) the instance of the vertex is different to any other in the prefix. This is captured

by the following formula for each vertex a:

φa ∧ (
∧

eb∈P
b→a∈A

φeb ∧ φb→a)(
∧

eb∈E\P
b→a∈A

¬φeb ∨ ¬φb→a)(
∧

ea∈E

¬φea) (3)

Whenever such a combination exists and the formula reduces to φ, we add the event to

the unfolding, appropriately connecting it to P and labeling it by the φ. The unfolding

3 Some optimization techniques allow to consider only direct causality and direct conflicts. We make

use of this observation in our further examples.



procedure finishes when (3) is no longer satisfiable. Finally, conditions are replaced by

conflicts: for every pair of mutually exclusive events, their Boolean conditions are removed

and conflict ea#eb is added.

Algorithm 2 shows the complete transformation procedure. Function PE(E , H) takes

the current unfolding E and CPOG H , and returns a set pe of possible extensions satisfy-

ing (3), and for each e ∈ pe, its set of predecessors Pe, label λpe(e), and condition ψpee .

Algorithm 2 Transforming a CPOG into a LES

Require: a well-formed CPOG H = (V,A,X, φ, ρ)
1: E = (E,≤,#, λ,X, ϕ, ρ) := (∅, ∅, ∅, ∅, X, ∅, ρ)
2: (pe, {Pe}e∈pe, λ

pe, ϕpe) := PE(E , H)
3: while pe 6= ∅ do

4: add some e ∈ pe to E and set Pe ≤ e, λ(e) = λpe(e) and ϕe = ϕpe
e

5: while ∃ea, eb ∈ E : ¬ϕea ∨ ¬ϕeb do

6: set ea#eb
return (E,≤,#, λ)

We can use a SAT-solver to ‘guess’ a combination of an event a and a predecessor set

P satisfying (3).

Proposition 2. Given a CPOG and a prefix of its unfolding, deciding if an instance of a

vertex is a possible extension is NP-hard.

Proof. Consider a CPOG with a single vertex v having condition φ. Deciding if v is a

possible extension requires checking φ for being a contradiction. See more details in [4].

The unfolding algorithm is deterministic: the resulting LES does not depend on the

order in which events are added into the unfolding due to the following result proved in [4].

Proposition 3. LetE be the current set of events of the unfolding and ea 6= eb two possible

extensions, then eb is a possible extension of E ∪ {ea}.

Example 5. Consider the CPOG shown in Fig. 2. The unfolding procedure starts with E =
∅ and keeps checking vertices of the CPOG for possible extensions. At start, only vertex a

can be added. For example, the constraint imposed by non-predecessors in (3) will include

¬φa→b = 0 for vertex b, hence it is not a possible extension at start. We proceed by adding

event e0a to the unfolding with φe0
a

= 1. When we recompute the possible extensions,

formula (3) reduces to x∨ y and x∧ y for vertices b and e, respectively, therefore events e0b
and e0e are added with e0a as their predecessor and with φe0

b

= x ∨ y and φe0
e
= x ∧ y. At

this point E = {e0a, e
0
b , e

0
e} and we find that c and d are possible extensions adding events

e0c and e0d with event e0b as the predecessor and conditions φe0
c
= y and φe0

d

= x. Now

E = {e0a, e
0
b , e

0
c , e

0
d, e

0
e} and we find that c and d are possible extensions again. Two new

events e1c and e1d are added. Finally, as E grows to {e0a, e
0
b , e

0
c , e

1
c , e

0
d, e

1
d, e

0
e}, formula (3)

becomes unsatisfiable and the unfolding procedure is finished. Conditions of events e0b and

e0e are mutually exclusive: (x ∧ y) ∧ (x ∨ y) = 0, therefore we add conflict e0b#e
0
e. Due

to the same reasoning, conflicts e0c#e
1
c and e0d#e

1
d are added. Finally, when all Boolean

conditions are removed from the CLES, the resulting LES is that of Fig. 3.

The result below shows that the unfolding algorithm is correct, i.e. it preserves set of

partial orders.

Theorem 3. Let H = (V,A,X, φ, ρ) be a well-formed CPOG and E = (E,≤,#, λ) the

LES obtained by the unfolding procedure, then π(Ω(E)) = P (H).



Proof. The algorithm transforms the CPOG H into a CLES G and the later into a LES

E by replacing conditions by conflicts. The proof shows that i) projections of H and G

over a valid opcode coincide; and ii) projections over G and maximal configurations of E
coincide. The complete proof can be found in [4].

As one can see, the transformation procedure from CPOGs to LESs is significantly

more computationally intensive: unravelling CPOGs requires the use of a SAT solver. For-

tunately, the SAT instances that need to be solved are similar to each other, therefore one

can use incremental SAT solving techniques [10] to speed up the algorithm.

6 Conclusion

The paper discusses the use of two models (LESs and CPOGs) for the compressed represen-

tation of sets of partial orders. We show that LESs work well on most practical examples,

however, due to their acyclic nature they cannot efficiently handle the cases where sets of

partial orders contain many permutations defined on the same set of events. These cases are

very well handled by CPOGs, however, the use of Boolean conditions for resolving con-

flicts makes them less intuitive and more demanding from the algorithmic complexity point

of view. In particular, most interesting questions about CPOGs are NP-hard. The advantages

of both models are combined by CLESs which are used as an intermediate formalism by

the presented algorithms transforming a set of partial orders from a given compressed rep-

resentation in a LES or a CPOG into an equivalent compressed representation in the other

formalism without the explicit enumeration of all partial orders.

Further work includes optimization of the presented algorithms, their integration with

Workcraft EDA suite [?], and validation on larger case studies coming from process mining

and VLSI design domains.
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