
HAL Id: hal-01060611
https://inria.hal.science/hal-01060611

Submitted on 27 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Consistency Study of the Windows Registry
Yuandong Zhu, Joshua James, Pavel Gladyshev

To cite this version:
Yuandong Zhu, Joshua James, Pavel Gladyshev. A Consistency Study of the Windows Registry. 6th
IFIP WG 11.9 International Conference on Digital Forensics (DF), Jan 2010, Hong Kong, China.
pp.77-90, �10.1007/978-3-642-15506-2_6�. �hal-01060611�

https://inria.hal.science/hal-01060611
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Chapter 6

A CONSISTENCY STUDY OF
THE WINDOWS REGISTRY

Yuandong Zhu, Joshua James and Pavel Gladyshev

Abstract This paper proposes a novel method for checking the consistency of
forensic registry artifacts by gathering event information from the arti-
facts and analyzing the event sequences based on the associated times-
tamps. The method helps detect the use of counter-forensic techniques
without focusing on one particular counter-forensic tool at a time. Sev-
eral consistency checking models are presented to verify events derived
from registry artifacts. Examples of these models are used to demon-
strate how evidence of alteration may be detected.

Keywords: Windows forensics, registry analysis, counter-counter-forensics

1. Introduction

Electronic devices often contain large amounts of data of evidentiary
value. However, since it is possible for a suspect to alter the devices
through software or hardware, it is extremely important in digital inves-
tigations to determine whether or not the evidence collected from seized
devices has been modified [5].

This paper advocates the use of information obtained from the Win-
dows registry to verify the consistency of the collected evidence. The
Windows registry is a database that stores information about the hard-
ware, software and user profiles of a Windows machine [6]. As such, it an
important resource for identifying events that occurred during the use
of the machine [1]. During the normal execution of an operating system,
certain events always occur in the same order. Therefore, if informa-
tion about some events is obtained from the registry, then correlating
known sequences of these events in temporal order of their timestamps
gives a clue as to whether or not the evidence is internally consistent.
For example, the event involving the installation of a particular soft-

78 ADVANCES IN DIGITAL FORENSICS VI

ware system for the first time must occur before the event involving the
running of the software for the first time. If the timestamp associated
with installing the software is later than the timestamp associated with
running the software, either the timestamp itself or other information
about the event was tampered with.

This paper proposes a method to verify the consistency of registry
artifacts by obtaining event information from the artifacts and exam-
ining their associated timestamps in event sequences. This provides a
generic way to detect the use of counter-forensic techniques without fo-
cusing on one particular counter-forensic tool at a time. The method
also helps detect when timestamps were altered, which gives a digital
forensic investigator additional information about the user’s activities.

2. Related Research

Previous research on detecting counter-forensic techniques has pro-
ceeded along two lines. One approach (see, e.g., [2]) tends to solve the
problem from very specific perspective. Experiments are performed to
understand the behavior of a particular counter-forensic tool; forensic
investigators are then provided with information about where traces of
the tool may be found. Although the approach is effective, it suffers from
the limitation that the results may not apply to other tools. Indeed, it
is almost impossible to develop an individual method against each tool
because there are so many counter-forensic tools available [5].

The second, generic approach engages methods that check the con-
sistency of system properties. For example, Gladyshev and Enbacka [3]
developed an algorithm to check the consistency of log files. Willassen
[7] proposed a technique for discovering evidence of “antedating” by
studying the sequence number allocation properties of storage systems.
Motivated by these techniques, this paper proposes a general method for
verifying the consistency of collected evidence. Although this method
may not always be as effective as searching for traces of a counter-forensic
tool, it can be used against a wide range of counter-forensic techniques
because inconsistencies are detected regardless of the specific technique
used to tamper with evidence.

3. Consistency Checking Method

The consistency checking method proposed in this paper involves two
steps: (i) obtain events and their timestamp information from the Win-
dows registry; and (ii) verify the consistency of the identified events
using the appropriate consistency checking model.

Zhu, James & Gladyshev 79

Figure 1: Extracting events from HKCU\Software\Microsoft\Office\12.0\Word\File
MRU

Extracted Event 1: File MRU key was updated at 06/12/2009 21:48:33 UTC

Extracted Event 2: Value “[F00000000][T01CA76BDDB158E80]*c:\1.doc”
was updated into the File MRU key before 06/12/2009 21:48:33 UTC

Figure 2: ShellBag information associated with “Test” Folder

Figure 3: Contents of HKCU\Software\Microsoft\Office\12.0\Word\FileMRU

 Last Access Time Document Path

Desktop

My Documents

My Computer

File System

Test

Modification Time

Last Access Time Creation Time

Figure 1. Event extraction.

3.1 Events and Timestamps

All events obtained from the registry are categorized as extracted
events or inferred events. Extracted events are associated with infor-
mation that was updated at specific registry locations at specific times;
these events can be directly extracted from the registry. Inferred events
are deduced from the registry contents based on known relationships
between registry information and user and system actions.

Extracted Events

An extracted event is either an update of a registry key or a data value
corresponding to a key. The time of the update is determined by the
LastWrite timestamp of the associated registry key, which specifies the
most recent modification time of the key. Figure 1 illustrates the extrac-
tion of events from HKCU\Software\Microsoft\Office\12.0\Word\File
MRU. If the extracted event (Ext Event) corresponds to the updating
behavior of the key, then the timestamp can be written as:

TExt Event(Key) = TLastWrite (1)

Since each data value causes the LastWrite time of the associated key
to be updated, the timestamp of the event is estimated by:

TExt Event(V alue Data) ≤ TLastWrite (2)

Upon combining Equations 1 and 2, the timestamp estimation equation
that applies to all possible extracted events is given by:

TExt Event ≤ TLastWrite (3)

A better way to estimate the timestamp for an extracted event associ-
ated with a particular record is to use the registry snapshot comparison
method [9]. This method helps bind an extracted event to a specific time

80 ADVANCES IN DIGITAL FORENSICS VI

interval. The comparison method is based on the fact that many Mi-
crosoft Windows versions automatically back up system registry hives,
creating “system restore points” approximately every 24 hours. By con-
sidering each registry snapshot as a previous state of the system registry
and comparing a given state of the registry with previous registry snap-
shots, changes made to the registry between the creation times of two
consecutive restore points can be identified. When previous registry
snapshots are available, comparing each registry snapshot with its pre-
ceding snapshot can identify extracted events that are known to have
occurred before the LastWrite timestamp of the key and also after the
creation time of the preceding registry snapshot:

TPrec Snapshot ≤ T Identified Ext Event ≤ TLastWrite (4)

Inferred Events

Carvey [1] has described the inference of user and system events from
the registry. In general, the time interval between an inferred event
and the action that triggered the corresponding update in the registry
(i.e., the corresponding extracted event) influences the selection of the
consistency checking model that is applied. Thus, inferred events are
divided into three groups:

Inferred events that occurred before the corresponding extracted
event.

Inferred events that occurred “at the same time” as the corre-
sponding extracted event.

Inferred events that occurred after the corresponding extracted
event.

Note that an inferred event and its associated extracted event do not
occur simultaneously. However, if the time interval is short enough, the
extracted event can be assumed to have occurred “at the same time” as
the action that precipitated it.

In the following, we present four examples of inferred events to demon-
strate how events may be inferred from registry information.

The first example involves ShellBag information associated with the
“Test” folder on a local computer (Figure 2). As described in [8], the
registry value associated with this folder includes the timestamp when
the ShellBag information was first updated in the registry. Therefore,
three events can be inferred:

Folder “Test” located on the Desktop was created at 08/12/2008
20:53:52.

Zhu, James & Gladyshev 81

Figure 1: Extracting events from HKCU\Software\Microsoft\Office\12.0\Word\File
MRU

Extracted Event 1: File MRU key was updated at 06/12/2009 21:48:33 UTC

Extracted Event 2: Value “[F00000000][T01CA76BDDB158E80]*c:\1.doc”
was updated into the File MRU key before 06/12/2009 21:48:33 UTC

Figure 2: ShellBag information associated with “Test” Folder

Figure 3: Contents of HKCU\Software\Microsoft\Office\12.0\Word\FileMRU

 Last Access Time Document Path

Desktop

My Documents

My Computer

File System

Test

Modification Time

Last Access Time Creation Time

Figure 2. ShellBag information associated with the “Test” folder.

Folder “Test” located on the Desktop was accessed at 08/12/2008
20:53:52.

Folder “Test” located on the Desktop was modified at 08/12/2008
20:53:52.

In this example, more than one event is inferred from a single registry
record. Since the consistency checking method is based on the events
and timestamps that are found, it is important to infer as many events
as possible from the registry. Note that all three events are known to
have occurred before the corresponding extracted event.

Figure 1: Extracting events from HKCU\Software\Microsoft\Office\12.0\Word\File
MRU

Extracted Event 1: File MRU key was updated at 06/12/2009 21:48:33 UTC

Extracted Event 2: Value “[F00000000][T01CA76BDDB158E80]*c:\1.doc”
was updated into the File MRU key before 06/12/2009 21:48:33 UTC

Figure 2: ShellBag information associated with “Test” Folder

Figure 3: Contents of HKCU\Software\Microsoft\Office\12.0\Word\FileMRU

 Last Access Time Document Path

Desktop

My Documents

My Computer

File System

Test

Modification Time

Last Access Time Creation Time

Figure 3. FileMRU key.

The second example involves the FileMRU key, which is located at
HKCU\Software\Office\12.0\Microsoft\Word\FileMRU (Figure 3). It
stores the paths of Word documents that have recently been opened by
Microsoft Office. The information in Figure 3 implies the (inferred) event
that a Word document C:\1.doc was accessed at 13:58:55 16/07/2009
corresponding to the Windows 64-bit timestamp 01CA061D8EC3DF20.

82 ADVANCES IN DIGITAL FORENSICS VI

Figure 4: Contents of HKLM\System\ControlSet01\Enum\USBSTOR

Figure 5: OpenSaveMRU update example

Step 2: Update information in
the “*” sub-key

Step 1: Update information in
the “txt” sub-key

Figure 4. USBSTOR subkey.

The third example involves the USBSTOR subkey located at HKLM\
System\ControlSet01\Enum\USBSTOR (Figure 4). The inferred event
is that a USB device Disk&Ven Netac&Pro OnlyDisk&Rev 1.11 was
connected to the system at 23/09/2008 18:23:51. The timestamp is
estimated using the extracted event: Registry key HKLM\System\Cont
rolSet-01\Enum\USBSTOR\Disk&Ven Netac&Pro OnlyDisk&Rev 1.11
\5&4d408f08&0 was updated at 23/09/2008 18:23:51. The timestamp
of the extracted event can be used for this inferred event because the in-
ferred event belongs to the second type of inferred event (defined above),
where the extracted event is assumed to have occurred at the same time
as the inferred event.

The fourth example corresponds to the third type of inferred event
that occurred after the corresponding extracted event. The value Lease
TerminatesTime under the registry key HKLM\SYSTEM\ControlSet001
\Services\Tcpip\Parameters\Interfaces\AdapterID gives the time that
the IP address of the adapter expired. This definitely occurred after the
adaptor was connected.

3.2 Consistency Checking Models

After obtaining event information from the registry, it is necessary
to verify the events and their associated timestamp information. This
section describes several consistency models that may be used for this
purpose. Because each event can be placed in a different position in
a time sequence when grouped with other events, it is difficult, if not
impossible, to define a consistency checking model for an event without
considering the details of other events. We address this issue in a generic
manner using a context-based model. Each model is defined with respect
to a specific context; the model is applied when the events meet the
associated conditions.

Zhu, James & Gladyshev 83

Basic Model

The basic event-time bounding model is used to estimate the time
frame during which a particular event without time information oc-
curred. This is done by considering its relation in time to other events
that are known to have occurred either before or after the event [4]. The
same concept can also be applied to user data. Since this model also
represents the relationships between a sequence of multiple events and
their timestamps, it is the basis of other consistency checking models.
The event-time bounding model utilizes two rules:

Rule 1: If Event A occurred before Event B, and Event B oc-
curred before Event C, then the time that Event B occurred is
bounded by the times that Events A and C occurred:

TA < TB < TC (5)

Rule 2: If several Events A1, A2, . . ., Am occurred before Event
B, and Event B occurred before several Events C1, C2, . . ., Cn,
then the time that Event B occurred is bounded by:

Max(T A1 , TA2, . . . , T Am) < TB < Min(T C1 , TC2, . . . , T Cn) (6)

Checking Inferred Events and Extracted Events

The basic model was developed to verify the consistency of inferred
events and extracted events. As mentioned earlier, there are three types
of inferred events. Therefore, based on their relationship with the cor-
responding extracted event, three equations can be derived using Equa-
tions 3 and 5.

For an inferred event (Inf Event) that occurred before the extracted
event, we have:

T Inf Event < TExt Event ≤ TLastWrite

For an inferred event that occurred at the same time as the ex-
tracted event, we have:

T Inf Event = TExt Event ≤ TLastWrite

For an inferred event that occurred after the extracted event, we
have:

T Inf Event > TExt Event

84 ADVANCES IN DIGITAL FORENSICS VI

or, if the time difference ∆ between the action and a future action
is known, we have:

T Inf Event = TExt Event + ∆

In the example in Figure 2, if the LastWrite timestamp of the key is
07/12/2008 11:00:00, then based on the model for inferred events that
occurred before the corresponding extracted event, the information con-
flicts with the inferred event: Folder “Test” was created at 08/12/2008
20:53:52.

Additionally, if multiple inferred events are identified as being asso-
ciated with the same extracted event, the timestamp of the extracted
event will be affected by all the associated inferred events. Therefore, the
consistency checking models must be extended according to Equations
3 and 6.

For inferred events that occurred before the extracted event, we
have:

Max(T Inf Events) < TExt Event ≤ TLastWrite

For inferred events that occurred at the same time as the extracted
event, we have:

Max(T Inf Events) = TExt Event ≤ TLastWrite

For inferred events that occurred after the extracted event, we
have:

Min(T Inf Events) > TExt Event

The application of the model is illustrated using the UserAssist key at
HKCU\Software\Windows\CurrentVersion\Explorer\UserAssist. This
key stores a list of values that record information about the execution
of software on the computer. Each time a particular software executes,
the corresponding value is updated under the UserAssist key. This falls
under the model for inferred events that occurred at the same time as
the corresponding extracted event. Assume that three values are found
under the UserAssist key as shown in Table 1. Upon applying the model,
Max(T Inf Events) is equal to 15:35:12 14/05/2009. If the LastWrite
timestamp is 20:04:31 25/04/2009, then the model proves that the
event information is inconsistent.

Zhu, James & Gladyshev 85

Table 1. Interpreted information for the UserAssist key.

Software Path Timestamp

C:\Program Files\Internet Explorer\iexplorer.exe 10:03:01 05/03/2009
C:\WINDOWS\system32\notepad.exe 15:35:12 14/05/2009

C:\Program Files\Windows Media Player\wmplayer.exe 19:11:52 22/01/2009

Checking Inferred Events

When examining the registry, it is possible to infer events from dif-
ferent locations in the registry that point to the same user or system
action. This is because information is sometimes saved at multiple loca-
tions in the registry. The consistency of inferred events can be verified
using these related pieces of data.

Zhu, et al. [8] have proposed several rules that use ShellBag informa-
tion to determine if a folder was accessed. Specifically, the information
under the BagMRU registry key (located at HKCU\Software\Microsoft\
Windows\ShellNoRoam\BagMRU) and the Bags key (located at HKCU\
Software\Microsoft\Windows\ShellNoRoam\Bags) can be used to deter-
mine if the folder was accessed during a particular period. If one event,
i.e., the folder was accessed at 10/07/2009 7:30:00 is inferred from in-
formation in the Bags key, and another event, i.e., the same folder was
not accessed between 09/07/2009 9:12:00 and 11/07/2009 18:20:30
is inferred from the BagMRU key, then it follows that the two inferred
events are not consistent.

Checking Extracted Events

The consistency between extracted events is due to the fact that some
registry keys are always updated after other keys. When events pertain-
ing to registry operation are extracted, their timestamps should appear
in the same order. By applying the basic model to this relationship it is
possible to say that: if Key B is always updated after Key A, then the
most recent extracted event of Key B is definitely after the most recent
extracted event of Key A:

Max(T Ext Events(Key A)) < Max(T Ext Events(Key B))

Because the most recent extracted event of a registry key is equal to the
LastWrite timestamp of the key, the consistency check can be expressed
as:

TLastWrite(KeyA) < TLastWrite(KeyB)

86 ADVANCES IN DIGITAL FORENSICS VI

Figure 4: Contents of HKLM\System\ControlSet01\Enum\USBSTOR

Figure 5: OpenSaveMRU update example

Step 2: Update information in the
“*” subkey

Step 1: Update information in
the “txt” subkey

Figure 5. OpenSaveMRU update example.

Similarly, if Key B is always updated after other Keys A1, A2, . . ., An,
then the timestamp of Key B is constrained by the most recent extracted
events:

Max(Max(T Ext Events(Key A1)), . . . ,Max(T Ext Events(Key An)))

< Max(T Ext Events(Key B))

Upon replacing the most recent extracted event with the LastWrite
timestamp of the key, the consistency check can be written as:

Max(T LastWrite(Key A1), . . . , T LastWrite(Key An)) < TLastWrite(Key B)

This model can be used to check the consistency of event information
stored in the OpenSaveMRU key at HKCU\Software\Microsoft\Window
s\CurrentVersion\Explorer\ComDlg32\OpenSaveMRU. The key is kno-
wn to record the most recently used history of the open and save dialog
of the Windows system. For example, downloading a file and using the
open and save window to save the file in a local directory updates this
key with information about the selected directory.

Figure 5 presents the structure of the OpenSaveMRU key. Subkeys
in OpenSaveMRU correspond to files with extensions (e.g., “jpg” corre-
sponding to a .jpg file and “rar” corresponding to a compressed .rar
file). The OpenSaveMRU key itself saves information about files without
extensions. The only exception is that the subkey “*” records directories
for every file.

The algorithm used to update the OpenSaveMRU key and its subkeys
checks if the open and save window is used. If it is, the path of the
file is stored in the “*” subkey after updating the other file extension

Zhu, James & Gladyshev 87

Table 2. Interpreted information of OpenSaveMRU.

Registry Key Path Timestamp

OpenSaveMRU\bmp 07:42:16 13/07/2009
OpenSaveMRU\jpg 22:12:28 21/07/2009

OpenSaveMRU\txt 21:15:42 09/07/2009
OpenSaveMRU* 19:27:09 14/07/2009

type keys. In the example in Figure 5, the file C:\TestFolder\test.txt
was first stored in the “txt” subkey, and then saved in the “*” subkey.
That is to say, the “*” key is always updated after other OpenSaveMRU
keys or subkeys. Thus, the “*” key satisfies the conditions described
above. Table 2 presents the timestamps of all the keys; the information
is inconsistent because the timestamp of the OpenSaveMRU\txt key is
later than the timestamp of the OpenSaveMRU* key.

Checking Registry Events and Other Events

Apart from the registry database, there are other sources that provide
information about events that have occurred. Two important sources of
events that should be checked for consistency are file timestamps and
registry snapshots.

File Timestamps: In most versions of Microsoft Windows, three
timestamps are associated with a file, corresponding to when the
file was last accessed, last modified and created. Each extracted
event obtained from the registry indicates an update of the reg-
istry file, so the extracted event should cause the modification
timestamp of the registry file to be updated if the file handle is
properly closed after the update. The consistency check for this
situation is:

Max(T Ext Event 1, . . . , T Ext Event n) ≤ TReg Mod T ime

A better method to implement this check is to compare the Last-
Write time of each extracted event with the last modification time
of each file because Max(T ExtEvents) is equal to T LastWriteKey. The
consistency check for this situation is:

Max(T LastWrite 1, . . . , T LastWrite n) ≤ TReg Mod T ime

Note that this inequality does not apply when the registry file
handle is not closed properly due to abnormal termination.

88 ADVANCES IN DIGITAL FORENSICS VI

Registry Snapshots: Each registry snapshot is created by up-
dating the contents of the preceding registry snapshot. Therefore,
any events that have occurred between two snapshots will appear
after the creation time of the preceding snapshot:

TPrec Snapshot < Min(T Ext Event 1, . . . , T Ext Event n)

TPrec Snapshot < Min(T Inf Event 1, . . . , T Inf Event n)

Whether an extracted event has occurred or not is determined
by comparing the timestamps of a registry key in the snapshot
and in the next snapshot. If the timestamp is updated in the
newest snapshot, then it implies that the corresponding extracted
event did occur. According to Equation 3, the timestamp of the
extracted event cannot be after the updated LastWrite timestamp.
Therefore, the consistency check for this situation is:

TPrec Snapshot ≤Min(T Updated LastWrite 1, . . . , T Updated LastWrite n)

3.3 Other Consistency Checking Considerations

After identifying inconsistent information, there may be a need to
understand how the inconsistency was created. As mentioned above, if
the system runs without any intentional changes, it will be consistent
all the time. Some of the reasons for inconsistent information are:

System Clock Adjustment: Many timestamps are based on the
current system clock, especially the LastWrite timestamp associ-
ated with each key. If the system clock is temporarily adjusted,
it may leave detectible inconsistencies in the timestamps recorded
during the altered time period. A consistency check may identify
these inconsistencies if they are not overwritten by new informa-
tion.

Registry Information Modification: It is often the case that
the registry API is used to modify registry information. While any
part of the registry can be modified, the LastWrite timestamp of
the key is also updated because the system considers the invocation
of the API as a normal registry operation. Therefore, it is possible
to identify this trace by examining the consistency of extracted
events. An inconsistent timestamp may imply that tampering has
occurred. For example, in Table 2, if RegEdit was used to mod-
ify the contents of the jpg subkey at 22:12:28 21/07/2009, the
inconsistency shown in Table 2 would be produced.

Zhu, James & Gladyshev 89

Registry Hive Modification: A file editor tool can be used
to modify the registry hive directly. This is hard to implement
in practice because it requires the user to understand the unique
structure of the particular registry hive. Also, it is difficult to
detect if the registry has been modified in this manner because
the registry is not automatically updated when the modification is
made unless the timestamp is also edited at the same time.

4. Conclusions

The method for checking the consistency of registry information in-
volves extracting and inferring events and their corresponding time-
stamps from the registry database. Appropriate consistency checking
models are then used to verify the information that is collected and help
detect counter-forensic activity. Our future research will examine the
potential of using other registry information as well as data from other
sources in sophisticated consistency models.

Acknowledgements

This research was funded by the Science Foundation of Ireland under
the Research Frontiers Program 2007 Grant No. CMSF575.

References

[1] H. Carvey, Windows Forensic Analysis, Syngress, Burlington, Mas-
sachusetts, 2007.

[2] M. Geiger and F. Cranor, Counter-Forensic Privacy Tools: A Foren-
sic Evaluation, Technical Report CMU-ISRI-05-119, Institute for
Software Research International, Carnegie-Mellon University, Pitts-
burgh, Pennsylvania (reports-archive.adm.cs.cmu.edu/anon/isri20
05/CMU-ISRI-05-119.pdf), 2005.

[3] P. Gladyshev and A. Enbacka, Rigorous development of automated
inconsistency checks for digital evidence using the B method, In-
ternational Journal of Digital Evidence, vol. 6(2), pp. 1–21, 2007.

[4] P. Gladyshev and A. Patel, Formalizing event time bounding in
digital investigations, International Journal of Digital Evidence, vol.
4(2), pp. 1–14, 2005.

[5] S. Hilley, Anti-forensics with a small army of exploits, Digital In-
vestigation, vol. 4(1), pp. 13–15, 2007.

[6] Microsoft Corporation, Windows registry information for advanced
users, Redmond, Washington (support.microsoft.com/kb/256986),
2008.

90 ADVANCES IN DIGITAL FORENSICS VI

[7] S. Willassen, Hypothesis-based investigation of digital timestamps,
in Advances in Digital Forensics IV, I. Ray and S. Shenoi (Eds.),
Springer, Boston, Massachusetts, pp. 75–86, 2008.

[8] Y. Zhu, P. Gladyshev and J. James, Using ShellBag information
to reconstruct user activities, Digital Investigation, vol. 6(S1), pp.
S69–S77, 2009.

[9] Y. Zhu, J. James and P. Gladyshev, A comparative methodology for
the reconstruction of digital events using Windows restore points,
Digital Investigation, vol. 6(1-2), pp. 8–15, 2009.

