Data Fingerprinting with Similarity Digests

Abstract : State-of-the-art techniques for data fingerprinting have been based on randomized feature selection pioneered by Rabin in 1981. This paper proposes a new, statistical approach for selecting fingerprinting features. The approach relies on entropy estimates and a sizeable empirical study to pick out the features that are most likely to be unique to a data object and, therefore, least likely to trigger false positives. The paper also describes the implementation of a tool (sdhash) and the results of an evaluation study. The results demonstrate that the approach works consistently across different types of data, and its compact footprint allows for the digests of targets in excess of 1 TB to be queried in memory.
Type de document :
Communication dans un congrès
Kam-Pui Chow; Sujeet Shenoi. 6th IFIP WG 11.9 International Conference on Digital Forensics (DF), Jan 2010, Hong Kong, China. Springer, IFIP Advances in Information and Communication Technology, AICT-337, pp.207-226, 2010, Advances in Digital Forensics VI. 〈10.1007/978-3-642-15506-2_15〉
Liste complète des métadonnées

Littérature citée [22 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01060620
Contributeur : Hal Ifip <>
Soumis le : mardi 28 novembre 2017 - 12:26:02
Dernière modification le : vendredi 29 décembre 2017 - 01:10:29

Fichier

Roussev10.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Vassil Roussev. Data Fingerprinting with Similarity Digests. Kam-Pui Chow; Sujeet Shenoi. 6th IFIP WG 11.9 International Conference on Digital Forensics (DF), Jan 2010, Hong Kong, China. Springer, IFIP Advances in Information and Communication Technology, AICT-337, pp.207-226, 2010, Advances in Digital Forensics VI. 〈10.1007/978-3-642-15506-2_15〉. 〈hal-01060620〉

Partager

Métriques

Consultations de la notice

61

Téléchargements de fichiers

6