
HAL Id: hal-01060621
https://hal.inria.fr/hal-01060621

Submitted on 27 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

Refining Evidence Containers for Provenance and
Accurate Data Representation

Bradley Schatz, Michael Cohen

To cite this version:
Bradley Schatz, Michael Cohen. Refining Evidence Containers for Provenance and Accurate Data
Representation. 6th IFIP WG 11.9 International Conference on Digital Forensics (DF), Jan 2010,
Hong Kong, China. pp.227-242, �10.1007/978-3-642-15506-2_16�. �hal-01060621�

https://hal.inria.fr/hal-01060621
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Chapter 16

REFINING EVIDENCE CONTAINERS
FOR PROVENANCE AND ACCURATE
DATA REPRESENTATION

Bradley Schatz and Michael Cohen

Abstract It is well acknowledged that there is a pressing need for a general solu-
tion to the problem of storing digital evidence, both in terms of copied
bitstream images and general information that describes the images and
context surrounding a case. In a prior paper, we introduced the AFF4
evidence container format, focusing on the description of an efficient,
layered bitstream storage architecture, a general approach to represent-
ing arbitrary information, and a compositional approach to managing
and sharing evidence. This paper describes refinements to the represen-
tation schemes embodied in AFF4 that address the accurate represen-
tation of discontiguous data and the description of the provenance of
data and information.

Keywords: Evidence containers, representation, provenance, tool interoperability

1. Introduction

One of the principal challenges in digital forensics is to deal with the
rapidly growing volume and complexity of information that is the subject
of investigations [4]. The acquisition and analysis of digital evidence
are hampered by the lack of interoperability between forensic analysis
tools; important forensic information is often unused by analysis tools
because it is locked within proprietary file formats or free text. Access to
case data is hampered by closed abstraction layers and the inefficiencies
imposed by the need to manually copy data in order to process it with
task-specific tools. Finally, the management of evidence is slowed by
format conversion and storage bandwidth limitations.

Digital forensic practitioners have largely settled on the raw (dd) and
Expert Witness Format (EWF) evidence storage formats for hard drive

228 ADVANCES IN DIGITAL FORENSICS VI

images. This has enhanced the ability – in the storage forensics field
at least – to acquire and analyze evidence using a variety of tools of
commercial and open source lineage.

Such formats are, however, poor surrogates for the original evidence.
A raw image fails to distinguish between sectors containing bytes with
the value zero and those where a read error has occurred. A raw image
does not record provenance-related information pertaining to the drive
such as the drive geometry and drive configuration overlays, nor does it
record the activities performed on the drive or image. The EWF format
popularized by the EnCase tool is similarly limited; however, it does
overcome some of the weaknesses of a raw image by recording limited
meta information related to the image within the container itself.

In practice, provenance information describing the evidence and its
outside context rarely becomes grist for the automated forensic mill,
mainly because it is collected and recorded manually by investigators
in a variety of formats, including handwritten free text and ad hoc file
formats. New approaches are required to represent digital evidence, both
in terms of raw bits and bytes on storage media (data) and information
describing related artifacts, entities and analytic results.

In an earlier paper [9], we introduced the AFF4 evidence container
format, which is designed to store arbitrary evidence images, context-
related information and analysis results within a unified container for-
mat. This paper describes refinements to AFF4 that address the accu-
rate representation of discontiguous data and describe the provenance
of data and information.

2. Ideal Evidence Container

The ideal evidence container would present to the investigator a per-
fect surrogate of the original physical evidence, whether it is a hard
drive, mobile phone flash memory or computer RAM. Such a container
would fully describe the characteristics, behavior, content and context
of the original evidence that it represents. These include:

Data Content: Multiple streams (HPA, DCO); hierarchical data
relationships (logical imaging); addressing windows (RAM holes,
bad sectors); addressing schemes (block size, CHS/LBA); SMART
status.

Physical Characteristics: Make; model; serial number; inter-
face (SATA, SCSI, etc.).

Context: Environment in which the hard drive existed; case-
related information.

Schatz & Cohen 229

Behavior: Error codes related to bad sectors.

A perfect fidelity surrogate – even if it were technically feasible – would
not be entirely desirable. Such a “virtual hard disk” would quickly frus-
trate the investigator by reliably imposing characteristics such as read
retries on bad sectors, I/O bandwidth limitations and seek latency. Ac-
cordingly, the ideal container would sacrifice fidelity to satisfy orthogonal
operational concerns such as:

Efficiency: Storage space minimization; random access perfor-
mance; I/O speed.

Authentication: Cryptographic signing; hash storage.

Privacy: Encryption; redaction.

Resilience: Tolerance to underlying storage media failures.

3. Current State of Evidence Containers

From the original raw evidence format, evidence containers evolved
to incorporate seekable compression [9], embedded authentication and
integrity mechanisms such as hashes and CRC, and storage of a small
number of fields for describing images. More recently, the demand for
logical imaging has resulted in the emergence of a proprietary evidence
container format that supports the storage of multiple streams of data
along with file-oriented metadata (EnCase Logical Evidence File).

This current breed of commercial evidence containers does not address
the characteristics of evidence sources. For example, hard drives may
contain multiple address spaces, depending on whether features such as
host protected areas or drive configuration overlay are enabled. Images
of computer RAM require the consideration of holes in which no data
exists. Furthermore, the evidence containers fail to address the storage
of general information that is of relevance.

The research community has proposed a number of container formats.
The Advanced Forensics Format (AFF) [10, 11] introduced the storage
of arbitrary metadata within an evidence container, privacy via encryp-
tion and redaction, and resilience via fault tolerance. Digital evidence
bags [15] store arbitrary textual information along with images in the
same container. Sealed digital evidence bags [14] employ a composition
framework for evidence containers based on a linked information model.

We recently introduced the AFF4 evidence container format [9], which
defines an efficient, seekable, compressed storage format for multiple data
object images, a novel and powerful data model that enables the com-
position of data objects from other data objects, and an information

230 ADVANCES IN DIGITAL FORENSICS VI

Table 1. Comparison of representational capabilities of container formats.

Data Representation
raw EWF sgzip LE1 DEB SDEB AFF1 AFF4

Single Image Sto-
rage

Y Y Y N Y Y Y Y

Multiple Image Sto-
rage

N N N N Y Y N Y

Hierarchical Image
Storage (Logical
Imaging)

N N N Y Y Y N Y

Addressing Windo-
ws (Discontiguous
Images)

N N N N ? N N Y

Data Composition N N N N N N N Y
Seekable Compres-
sion

N Y Y ? N N Y Y

Information Representation
raw EWF sgzip LE1 DEB SDEB AFF1 AFF4

Metadata Storage N Y N Y Y Y Y Y
Arbitrary Metadata
Storage

N N N ? Y Y Y Y

Arbitrary Informa-
tion Storage

N N N N Y Y N Y

Formal Information
Model

N N N N N Y N Y

Composable Infor-
mation Model

N N N N N Y N Y

representation approach based on a linked information model. Table 1
compares the characteristics of AFF4 and those of other evidence con-
tainer formats.

4. AFF4 Data and Information Models

The general design goals of AFF4 are to provide an open and ex-
tensible evidence container that facilitates the storage, composition and
sharing of arbitrary types of digital evidence, information and analysis
results. AFF4 defines two interrelated models, one for representing and
documenting information, and the other for storing, referring to and
transforming bitstream data. The two models are linked by a naming
scheme in which items of relevance are identified using globally-unique
identifiers.

Schatz & Cohen 231

!"#$%&$
'(()%*#+%,&

-#./%&$
'(()%*#+%,&

0%)1.2.+1"
!&+13(31+13

0%)145#36%&$
'(()%*#+%,&

7%.8
!"#$1

9%1*1:%.1
-#./1.

'(()%*#+%,&.
%: +/4'00;

<=((,3+

<%$&#+=31

0%)1.4>
?1+# #+#
!&#)),*#+1

<(#*1

5#361
0%)1.

'00;4
",)="1

<%$&%&$
'(()%*#+%,&

Figure 1. Layered application of forensic tools with the AFF4 container.

The AFF4 data model is specifically designed to facilitate the stor-
ing, sharing and referencing of data without imposing the storage band-
width burden of copying data, while providing efficiency in terms of
storage space, random access latency and I/O bandwidth. Likewise,
the AFF4 information model is designed to facilitate the description of
forensically-relevant information, including evidence, case context and
general analytic results.

The “by reference” approach of the AFF4 architecture facilitates the
successive layered application of discrete task-specific tools on the an-
alytic results and data abstractions of tools operating at lower layers
of abstraction. In the architecture, the analysis results of a tool are
persistent when using the AFF4 information and data models in a new
AFF4 container or in an existing container. This significantly differs
from other approaches that either keep analysis results as intermediary
structures in the working memory of a tool (as in monolithic applications
like EnCase) or dump the results to an ad hoc (and likely non-machine-
readable) document.

Figure 1 presents the flow of information and data between AFF4-
aware forensic applications and AFF4 evidence containers. In this ex-
ample, an examiner employs an AFF4 imaging application to create two
disk images in a single container. Each image has two virtual address
spaces overlaying it: one for the regular portion of the disk and the other
that includes the HPA portion of the disk. The examiner uses the GUI
of the tool to enter case-relevant and context-related information associ-
ated with the images; meanwhile, the imaging tool records provenance-
related information obtained directly from the drives. Finally, the tool
records the MD5 hash of the entire disk and the information related to
media failures.

232 ADVANCES IN DIGITAL FORENSICS VI

Upon returning to the laboratory, the examiner proceeds to preserve
the evidence. A piecewise hash of the disk is created using SHA-256 or
some other hash algorithm (this is performed in the laboratory because
a hash algorithm such as SHA-256 is too slow to use in the field). The
computed hash values are stored in a new container, which refers to the
original container.

The investigator then uses a public key to cryptographically sign the
information associated with the image, including the piecewise hashes.
This signature is stored in the new container.

Automated processing of the image may involve a filesystem inter-
preter to create virtual file instances for each file in the image, instances
for deleted files and instances for unallocated space. These are also
placed in a new evidence container for subsequent consumption by other
tools. The unallocated space is then processed by a file carver, the results
of which are stored as virtual file instances in a new evidence container,
resulting in zero copy file carving [12].

This scenario demonstrates the feasibility of the AFF4 architecture
with respect to forensic imaging, piecewise hashing, signing and using
filesystem interpreter applications.

5. AFF4 Naming Scheme

The fundamental premise of representing both data and information
within AFF4 is that an object instance is created for any virtual or real-
world entity – be it a disk partition or a suspect. The object instance
acts as a surrogate for the real or virtual entity. Surrogates are identified
by associating a globally-unique identifier with each entity. We use both
uniform resource locators (URLs) and uniform resource names (URNs)
as entity identifiers.

We define structured URNs, which we call AFF4 URNs, for identifying
surrogates. An AFF4 URN is made globally unique by including a GUID
in its form:

urn:aff4:195bdf58-1bc9-4ba4-9a9c-f1c312673fbf

We use a variant of the ZIP file format for a default container. Thus,
an investigator who visually examines an AFF4 volume containing a disk
image would readily identify AFF4 URNs in the following locations:

The information segment, which is a file in an AFF4 container,
contains a serialization of all the objects within the volume. The
base attribute of the RDF serialization refers to the volume URN.

Image file segments are present in a folder within the ZIP file,
where the folder name is a filesystem-friendly encoding of the URN

Schatz & Cohen 233

that uniquely identifies the image. For example, a folder named
urn%3Aaff4%3A195bdf58-1bc9-4ba4-9a9c-f1c312673fbf might
refer to the image stream urn:aff4:195bdf58-1bc9-4ba4-9a9c-
f1c312673fbf/. Archive filenames can be shortened relative to
the volume URI. For example, the folder diskimage corresponds
to the fully-qualified URI urn:aff4:volume URI/diskimage.

Information segments (described in the next section) contain URNs
within their text.

URLs, which are typically used to uniquely identify a piece of termi-
nology, may be found as text within information segments and maps.
For example, we use the following URL to represent the concept of an
“Image:”

http://afflib.org/2009/aff4#Image

6. Refining the AFF4 Information Model

The original AFF4 information model was inspired by the Resource
Description Framework (RDF) [17], the data model that underlies the
Rich Site Summary (RSS) feeds used by blogging software. The RDF
data model facilitates object-oriented modeling with the key difference
that objects in the RDF universe have unique names and properties, and
the attributes and relationships of individual objects may be published
in different documents.

While the original information model is intuitive and simple to imple-
ment, it suffers from several shortcomings:

The method of mapping the information model to container seg-
ments (i.e., serialization scheme) results in inefficient storage when
large numbers of information instances are described.

The information model is not expressive enough to describe proven-
ance-related information.

The AFF4 serialization scheme is verbose, which makes it difficult
to read.

The lack of value types leads to ambiguity in interpreting values.
Also, there is no syntactic means for distinguishing between values
and URI references.

For these reasons and for standardization and interoperability, we
abandon the ad hoc RDF variant and instead adopt RDF in its entirety
as the information model. Under the new scheme, information is stored
in information segments whose suffixes represent the RDF encodings.

234 ADVANCES IN DIGITAL FORENSICS VI

For example, the name information.turtle in the AFF4 container,
refers to an RDF serialization using the Turtle encoding scheme [2]. For
conciseness and readability, we use Turtle as the default RDF serializa-
tion syntax. The URN of the serialization component is significant, with
the path component being interpreted as the graph name in which the
encoded RDF exists.

7. Provenance of Information

This section describes a general approach for expressing the prove-
nance of statements in the AFF4 universe. Provenance statements are
required to express information such as which tool generated which im-
age or analysis products, and to sign statements.

The original AFF4 provides for provenance-related statements in the
particular case of signing. However, the identity object, which imple-
ments signatures, presents some difficulties in the case of provenance
statements:

The semantics of the statement file in relation to its enclosing
instance is inconsistent with the information model.

Statements within a statement file are also made elsewhere within
the container.

Verifying the signatures of statements requires that the statements
be in the exact order and syntax in which they exist in the signa-
ture file.

A general solution to provenance requires a method for referring to a
set of RDF statements as a whole. Such statements about statements are
called “reified statements” in the knowledge representation literature. A
simple example is: Dick said “The serial number of the hard drive is
ZX322o91 and its hash value is 13343af423d.”

The subject Dick is making a statement covering two separate state-
ments: “The serial number of the hard drive is zx322o91” and “The
hash value of the hard drive is 13343af423d.”

A widely acknowledged problem of RDF is its limited ability to express
reified statements [7]. Named graphs constitute a solution to the problem
of reification in RDF, with the TriG language emerging as a syntax for
encoding reified information [6]. A named graph is simply a collection of
RDF statements that can be identified by an unambiguous name. Using
the TriG syntax, the reified statement above can be expressed as:

1 @prefix G1: <urn:aff4:19857a87-a190b2f87>
2 @prefix Hdd1: <urn:aff4:652e4027-27fab2941>

Schatz & Cohen 235

3 @prefix aff4: <http://afflib.org/2009/aff4#>

4 @prefix Dick: <urn:aff4:652e4027-27fab2941>
5
6 G1: {

7 Hdd1: aff4:serialNumber "zx322o91"
8 Hdd1: aff4:hash "13343af423d"
9 }

10
11 Dick: aff4:said <G1:>

In the listing above, Lines 1-4 define namespace identifiers that are
substituted when they occur elsewhere in the document. For exam-
ple, in Line 7, aff4:serialNumber is interpreted to mean the URL
http://afflib.org/2009/aff4#serialNumber. This uniquely-identi-
fied vocabulary term is defined to have the meaning of a serial num-
ber. In Lines 6-9, G1: is the unique identifier for the named graph that
contains the two statements referred to in our example. Named graph
identifiers may be referred to in the subject and object parts of RDF
statements. Finally, in Line 11, there is a single statement that refers to
the named graph G1:.

Following this approach, we refine the semantics of the AFF4 infor-
mation model to imply that for any information segment, the statements
implied by interpreting the content of the segment are defined to exist
within a named graph based on the following conventions:

The graph name is the URN of the volume when the information
segment is in the root of the volume.

The graph name is the URN interpretation of the path when the
information segment exists in a sub-path of the volume.

Consider, for example, an AFF4 ZIP container containing a ZIP
file comment urn:aff4:6cd61-52398e-4942ea and the two information
segments in the listing:

1 /information.turtle
2 /urn%3Aaff4%3A19d6cd61-598e-49ff/information.turtle

The RDF statements contained in the first segment would be inter-
preted to exist in a named graph with the URN of the AFF4 volume
urn:aff4:6cd61-52398e-4942ea. The RDF triples contained in the
second segment would be interpreted as being contained in the graph
named urn:aff4:19d6cd61-598e-49ff after decoding the filesystem-
friendly encoding.

Provenance-related statements employ the named graph semantics in
their statements. Consider, for example, the recording of the provenance

236 ADVANCES IN DIGITAL FORENSICS VI

of the information describing an image generated by the command line
tool aff4imager. An abridged set of statements is presented in the
listing:

1 @prefix G1: <urn:aff4:19857a87-a190b2f87>
2 @prefix G2: <urn:aff4:0a1fc78a-927bfacef>
3 @prefix T1: <urn:aff4:652e4027-ffff01199>

4 @prefix I1: <urn:aff4:9003027a-11199ffff>
5 @prefix aff4: <http://afflib.org/2009/aff4/#>
6

7 G2: {
8 T1: aff4:name "aff4imager"
9 T1: aff4:vendor <http://aff.org/>

10 T1: aff4:asserts G1:>
11 T1: aff4:type aff4:AcquisitionTool.
12 T1: aff4:version "0.2"

13 I1: aff4:type aff4:Image
14 I1: aff4:hash "3897450fa18094b13"^^aff4:md5
15 }

In this example, we define an instance T1: that represents the tool and
an instance I1: that represents the image. The aff4:asserts predicate
is used to specify that the tool “asserted” the information contained in
the graph G1:.

By identifying instances of type aff4:Tool and then identifying the
graph in which the statements are located, downstream consumers of
AFF4 containers would be able to identify the tool that generated spe-
cific information and data. While it is not related to provenance, note
that the type ^^aff4:md5 in Line 14 indicates the data type of the text
preceding it within quotes. In this case, it indicates that the value of
the aff4:hash predicate is the hex-encoded MD5 message digest of the
image.

8. Authentication and Non-Repudiation

With a means for referring to sets of statements in place, the approach
to authentication and non-repudiation of evidence can be been refined.
We conceptualize the relationship of signing containers in a manner sim-
ilar to the approach proposed in [6]. An identity remains a person or
entity as in the earlier AFF4 implementation. A warrant graph is a set
of statements that record the intentions or beliefs of an identity about
another set of statements, whether it be asserting, denying or quoting.
The identity vouches for the truth of the warrant graph by signing the
graph with a public key.

The following listing contains a warrant graph that refers to the
aff4imager information presented in the listing above:

Schatz & Cohen 237

1 @base: <aff4://1b056380-a0911-f06721>

2 @prefix G2: <urn:aff4:0a1fc78a-927bfacef>
3 @prefix G3: <aff4://19857a87-a190b-2f87ab>
4 @prefix A1: <aff4://502ffb11-00f10-7fcbaf>

5
6 G3: {
7 G2: aff4:assertedBy G3:

8 G3: aff4:hash "TljN2NiNzExMmEwM2MxNG"
^^aff4:canonical-sha256

9 G3: aff4:authority A1:

10 A1: aff4:certificate A1:/cert.pem
11 G3: aff4:signature "XSAFfbgEL5C8vA1W/W-="

^^aff4:canonical-sha256-rsa

12 }

The following observations can be made with regard to the listing:

Line 7 refers to the graph G2: from the previous listing. This
statement indicates that the warrant graph asserts the truth of
G2:. Any number of named graphs may be asserted (or denied or
other) within a warrant graph.

The graph digest of graph G3: is stated in Line 8. For serialization
independence, a graph digest is a message digest with the canonical
form of a set of triples in a named graph rather than the serialized
syntax. This facilitates the verification of the authenticity of the
target graph. The graph canonicalization method is specified by
the type parameter aff4:canonical-sha256, and is a variant of
the graph canonicalization algorithm in [5] and the digest and sig-
nature methods defined in the XML signature standard [1]. The
type parameter additionally indicates that the graph digest uses
the SHA-256 digest on the canonical graph.

Line 9 states that the identity A1: authorizes the warrant graph.

Line 10 states that the public key certificate of A1: is found at the
URN A1:/cert.pem.

Line 11 states the signature of G3: (warrant graph). The type
^^aff4:canonical-sha256-rsa indicates the method by which
the signature was constructed, which was to take the warrant
graph, canonicalize as above, take the SHA-256 hash, sign it using
the RSA private key of the authority A1:, and then encode it using
Base64.

The verification of a signed AFF4 container involves identifying a
signed warrant graph, removing the aff4:signature statement from

238 ADVANCES IN DIGITAL FORENSICS VI

the graph, canonicalizing the resulting graph, and then re-verifying the
calculated SHA-256 RSA signature. Recalculating the graph digests of
graphs asserted by the warrant graph further authenticates the informa-
tion contained in the graphs.

The use of named graphs, graph digests and graph signatures fa-
cilitates the piecewise generation of authenticable and non-repudiable
information in the AFF4 universe.

9. AFF4 Data Model

AFF4 defines two abstractions for storing and representing bitstream
data: the Stream and the Map. Instances of each of these abstractions
are identified by an AFF4 URI.

The lowest layer of abstraction for data storage in the AFF4 data
model is the Stream, an abstraction of a contiguous, randomly-accessible
byte sequence. AFF4 defines a number of implementations for stor-
ing and accessing Streams ranging from an efficient randomly-accessible
compressed container to a flat raw file.

The Map abstraction similarly represents a contiguous, randomly-
accessible byte array; however, it is composed of byte arrays from multi-
ple stream sources. Defining virtual data objects as comprising portions
of existing concrete data sources enables references to data objects within
images (e.g., files) or data objects composed of multiple images (e.g., re-
constructed RAID volumes). Maps are used as the fundamental building
block for representing the data portions of files, partitions, unallocated
space and reconstructions of virtual RAID volumes from images. Back-
ward compatibility with EWF images is provided by creating a virtual
image that maps to each compressed EWF segment.

10. Refining the AFF4 Data Model

AFF4 applications have revealed two shortcomings of the data model:
(i) referring to subranges of data within a Stream is heavyweight, requir-
ing the definition of a Map; and (ii) the data model does not support
discontinuities that occur in evidence sources such as RAM and faulty
hard drives.

10.1 Referring to Byte Ranges

AFF4 requires a means to refer to arbitrary address ranges (slices)
within AFF4 data objects. This is useful for a number of applications,
including the annotation of content in TCP streams with the time of
transmission, documenting provenance-related features of the derivation

Schatz & Cohen 239

of an analytic product (e.g., file metadata), and describing the piecewise
hash value of a chunk of an image.

An AFF4 slice provides the means to refer to a subrange within a URI.
It is expressed by specifying the range within the fragment component
of the URI:

URI#[offset:length]

The URI is a regular AFF4 Stream URI. The offset is a number that
indicates the byte offset within the stream address range and the length
is the number of bytes from the offset. For example, the slice URI:

urn:aff4:195bdf58-1bc9-4ba4-9a9c-f1c312673fbf#[512,128]

represents the address range from offset 512 to 640 in the URI.

urn:aff4:195bdf58-1bc9-4ba4-9a9c-f1c312673fbf

Note that the slice URI corresponds to an address range. In cases
where the address range is backed by a stream of actual data, it also
serves as a surrogate for the data within the bounds of the range. In
the case where there is no corresponding data, it is a surrogate for the
absence of data (i.e., an address space hole).

An example of a slice URI is demonstrated using a prototype piecewise
hashing tool. Consider the following slice URI:

urn:aff4:f37648c1#[0,2048] aff4:hash "c35f2ba345"^^aff4:sha256

The interpretation of the slice URI (which has been truncated for pre-
sentation) is that the content of the byte range from 0 to 2048 of the
stream urn:aff4:f37648c1 has a SHA-256 value of c35f2ba345.

10.2 Representing Discontiguous Data

With the exception of the original AFF, existing forensic formats do
not provide support for accurately imaging discontiguous data sources.
Examples of discontiguous data sources include disks with read errors
in certain sectors and the physical and virtual memory of computers
with address space holes. For reasons of accuracy and completeness, it
is important that the evidence container identifies areas of the Stream
address space where there is no corresponding data, and potentially, the
reason for the absence of data.

AFF4 provides a general solution to this problem by refining the se-
mantics of the Map abstraction. Whereas the Map abstraction initially
required that the target be a URI that resolves to a Stream or a Map,
the refinement additionally allows the inclusion of a specially-defined
URI as a target. Such a URI may indicate the characteristics of a byte
range.

240 ADVANCES IN DIGITAL FORENSICS VI

!"#
$%&'(!

!"#
$%&'()

*##)%++
$,"&%-(.-/")#-

01+2-34",5

!"&2167-$'()"7%-
3$')%"85

Figure 2. Address space mapping of a discontiguous evidence source.

For example, consider the imaging of a hard disk with a bad sector.
We define a Map to represent the address space of the original evidence
device and record the data content in a regular Stream. The Map records
correspondences between the data content in the original device and the
Stream. Figure 2 illustrates the mapping between the address space
of an acquired hard drive with read errors and the underlying storage
Stream. Note that the backing store stores valid data back to back, while
the Map provides a view of the data with missing data represented as
holes.

The address discontinuity that corresponds to the read error is given
the target URI aff4:UnknownData. The following listing shows a Map
segment that describes a discontinuity in this manner:

1 0,0,urn:aff4:da0d1948-846f-491d-8183-34ae691e8293
2 4096,0,http://libaff.org/2009/aff4#UnknownData
3 8192,4096,urn:aff4:da0d1948-846f-491d-8183-34ae691e8293

11. Representing Data Patterns

Storage media commonly comes from the factory with the data con-
tent of every byte set to zero. With hard drives rapidly increasing in
capacity, it is often the case that large runs of data within images contain
zeros (“zero data runs”). The AFF4 format reduces the storage impact
of zero data runs by compressing the runs. However, due to the uniform
chunking method, there is the potential for considerable repetition in
sources containing large numbers of zero data runs.

Known data runs may be expressed in AFF4 using the slice URI and
Map facilities. For zero runs, we define a special purpose URI with se-
mantics similar to the UNIX /dev/zero to represent a Stream containing
an unbounded number of zeros. This URI is http://afflib.org/2009
/aff4#ZeroFilledByteRange.

Of relevance to referencing common data patterns is recent work
related to Teleporter [16], which explores the efficient transmission of
forensic images by sending certain data runs of the image with reference

Schatz & Cohen 241

to a standard corpus of files. Thus, in the case of a common file such
as ntfs.dll, Teleporter would transport a fingerprint of the file rather
than the entire data content. The receiver would then reconstitute the
data content of the file from local sources.

12. Conclusions

The refinements made to the information and data models of the
AFF4 evidence container format address the accurate representation of
discontiguous data, help describe the provenance of stored evidence, and
support authentication and non-repudiation of data and information by
cryptographic signing.

Prototype implementations of AFF4 have been written in C, Python
and Java. Our future research will integrate AFF4 with the PyFlag
network forensic environment, the Volatility volatile memory analysis
framework and the Sleuth Kit filesystem analysis tool. Also, it will
ensure that AFF4 provides backward compatibility with the raw, EWF
and AFF1 evidence container formats.

References

[1] M. Bartel, J. Boyer, B. Fox, B. LaMacchia and E. Simon, XML-
Signature Syntax and Processing, World Wide Web Consortium,
Cambridge, Massachusetts (www.w3.org/TR/xmldsig-core), 2009.

[2] D. Beckett and T. Berners-Lee, Turtle: Terse RDF Tripe Language,
World Wide Web Consortium, Cambridge, Massachusetts (www
.w3.org/TeamSubmission/turtle), 2008.

[3] T. Berners-Lee, R. Fielding and L. Masinter, Uniform Resource
Identifiers (URI): Generic Syntax, RFC 2396 (www.ietf.org/rfc/rfc
2396.txt), 1998.

[4] B. Carrier, Defining digital forensic examination and analysis tools
using abstraction layers, International Journal of Digital Evidence,
vol. 1(4), 2003.

[5] J. Carroll, Signing RDF graphs, Proceedings of the Second Interna-
tional Semantic Web Conference, pp. 369–384, 2003.

[6] J. Carroll, C. Bizer, P. Hayes and P. Stickler, Named graphs, prove-
nance and trust, Proceedings of the Fourteenth International Con-
ference on the World Wide Web, pp. 613–622, 2005.

[7] J. Carroll and P. Stickler, TriX: RDF Triples in XML, Technical
Report HPL-2003-268, HP Labs, Palo Alto, California (www.hpl.hp
.com/techreports/2004/HPL-2004-56.pdf), 2004.

242 ADVANCES IN DIGITAL FORENSICS VI

[8] M. Cohen, PyFlag: An advanced network forensic framework, Dig-
ital Investigation, vol. 5(S1), pp. S112–S120, 2008.

[9] M. Cohen, S. Garfinkel and B. Schatz, Extending the Advanced
Forensic Format to accommodate multiple data sources, logical ev-
idence, arbitrary information and forensic workflow, Digital Evi-
dence, vol. 6(S1), pp. S57–S68, 2009.

[10] S. Garfinkel, Providing cryptographic security and evidentiary
chain-of-custody with the Advanced Forensic Format, library and
tools, International Journal of Digital Crime and Forensics, vol.
1(1), pp. 1–28, 2009.

[11] S. Garfinkel D. Malan, K. Dubec, C. Stevens and C. Pham, Ad-
vanced Forensic Format: An open, extensible format for disk imag-
ing, in Advances in Digital Forensics II, M. Olivier and S. Shenoi
(Eds.), Springer, Boston, Massachusetts, pp. 13–27, 2006.

[12] R. Meijer, The Carve Path Zero Storage Library and Filesystem
(ocfa.sourceforge.net/libcarvpath), 2006.

[13] R. Moats, URN Syntax, RFC 2141 (www.ietf.org/rfc/rfc2141.txt),
1997.

[14] B. Schatz and A. Clark, An information architecture for digital
evidence integration, Proceedings of the AusCERT Asia Pacific In-
formation Technology Security Conference, pp. 15–29, 2006.

[15] P. Turner, Unification of digital evidence from disparate sources
(digital evidence bags), Digital Investigation, vol. 2(3), pp. 223–228,
2005.

[16] K. Watkins, M. McWhorte, J. Long and B. Hill, Teleporter: An an-
alytically and forensically sound duplicate transfer system, Digital
Investigation, vol. 6(S1), pp. S43–S47, 2009.

[17] World Wide Web Consortium, RDF/XML Syntax Specification
(Revised), Cambridge, Massachusetts (www.w3.org/TR/REC-rdf-
syntax), 2004.

