N

N

Digital Watermarking of Virtual Machine Images
Kumiko Tadano, Masahiro Kawato, Ryo Furukawa, Fumio Machida,

Yoshiharu Maeno

» To cite this version:

Kumiko Tadano, Masahiro Kawato, Ryo Furukawa, Fumio Machida, Yoshiharu Maeno. Digital Water-
marking of Virtual Machine Images. 6th IFIP WG 11.9 International Conference on Digital Forensics
(DF), Jan 2010, Hong Kong, China. pp.257-268, 10.1007/978-3-642-15506-2_ 18 . hal-01060623

HAL Id: hal-01060623
https://inria.hal.science/hal-01060623
Submitted on 27 Nov 2017

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://inria.hal.science/hal-01060623
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Chapter 18

DIGITAL WATERMARKING OF
VIRTUAL MACHINE IMAGES

Kumiko Tadano, Masahiro Kawato, Ryo Furukawa, Fumio Machida and
Yoshiharu Maeno

Abstract The widespread use of server and desktop virtualization technologies
increases the likelihood of unauthorized and uncontrolled distribution
of virtual machine (VM) images that contain proprietary software. This
paper attempts to address this issue using a platform-independent dig-
ital watermarking scheme applicable to a variety of VM images. The
scheme embeds a watermark in the form of files in a VM image; the
watermarked VM image is identified based on the embedded files. To
reduce the possibility of discovery by an attacker, the names of the em-
bedded files are very similar to the names of pre-existing files in the
VM image. Experiments indicate that the approach is fast and accu-
rate, with average turnaround times of 24.001 seconds and 7.549 seconds
for watermark generation and detection, respectively.

Keywords: Digital watermarking, virtual machine images

1. Introduction

In modern enterprise computing there is a growing trend toward con-
solidating virtual machines (VMs) in the server and client sides to reduce
costs and enhance portability and security. Such environments require
the means to export VM images to test software and to backup VMs.
For example, Amazon’s Elastic Compute Cloud [1] and Simple Storage
Service [2] provide the command ec2-download-bundle to download
VM images from a data center to local computers [3]. Unfortunately,
this technology also facilitates the unauthorized dissemination of VM
images containing proprietary software.

One approach for addressing this issue is to use host-based intru-
sion detection systems such as TripWire, AIDE and XenFIT [8]. These

258 ADVANCES IN DIGITAL FORENSICS VI

systems monitor unauthorized file system changes to detect malicious
activity involving VMs. However, it is difficult to identify VM images
after they have been distributed outside of an enterprise network (e.g.,
using peer-to-peer file sharing software).

Another approach is to implement strict access control and copy con-
trol of VM images. However, these controls often hinder the legitimate
use of VMs.

Therefore, it is necessary to address two issues: (i) identify VM im-
ages even after they have been illegally distributed; and (ii) facilitate
legitimate use of VM images. Digital watermarking of VM images can
address both these issues. However, as we discuss below, watermark-
ing techniques used for audio and video files are not applicable to VM
images.

Digital watermarking technologies typically modify redundant or un-
used digital content (e.g., inaudible frequency ranges for audio files) to
embed watermarks. In the case of audio and video files, modifying the
original information for digital watermarking produces imperceptible ef-
fects when playing the files [7]. In contrast, modifying a VM image
can cause boot failures when the watermarked image is executed. Ad-
ditionally, data on the watermarked VM is frequently changed because
of software updates, logging, etc. Unlike an audio or video file whose
content is unchanged, a VM image is essentially variable; consequently,
in order to identify the VM image, the image has to be watermarked
after every change.

Data hiding techniques [5] can be employed for watermarking VM
images. Data can be hidden in various locations:

m Areas marked as not in use by the partition table.

m Extended file attributes such as alternate data streams.

» Unused portions of the last data units of files (slack space).
m Reserved i-nodes that are not used by the operating system.

m Portions that are excluded during consistency checking of a jour-
naling file system.

» Files hidden via steganography using special file system drivers [6].

A major deficiency of existing data hiding techniques is the lack
of platform-independence: the techniques work on specific file systems
(e.g., NTFS), operating systems (e.g., Red Hat Linux) and OS kernel
versions (e.g., Linux 2.2.x). It is difficult, if not impossible, to apply

Tadano, et al. 259

these techniques to VMs in heterogeneous environments where multiple
file systems, operating systems and OS kernel versions are used.

To address this issue, we propose a digital watermarking scheme for
VM images that is independent of file systems, file formats, operating
systems, OS kernel versions and hardware. The scheme embeds a wa-
termark derived from the names of the files present in a VM.

2. Basic Concepts

Our digital watermarking scheme for VM images uses file names as a
watermark, not the contents of the files. A unique identifier is created
for each VM image and a watermark corresponding to the identifier is
embedded in the form of files in the file system of the VM image. These
embedded files are called “watermark fragment files.”

If the names of the watermark fragment files are randomly created,
they would be readily distinguishable from the names of the pre-existing
files on the VM, enabling an attacker to identify and subsequently re-
move the watermark fragment files. Thus, the watermarking scheme
makes the fragment files difficult to detect by creating fragment files
with names that are similar to pre-existing files in the VM and embed-
ding the files in random directories in the VM. A secure database is
used to store the identifier of each VM image and the corresponding
watermark fragment files.

3. Design and Implementation

This section describes the design and implementation of the digital
watermarking scheme.

3.1 System Components

The system has three components: (i) a watermark generator; (ii) a
watermark detector; and (iii) a watermark information database. Figure
1 illustrates the watermark generation and detection processes.

s Watermark Generator: The watermark generator employs the
names of the watermark fragment files as the watermark for a
VM image. It creates a watermarked VM image by embedding the
watermark fragment files in the VM image and stores the generated
file names in the watermark information database. The VM image
to be watermarked is created by copying the template VM image
file. Since the template VM images are used as the original data
for watermarking, these images should be securely managed. The
reason is that an attacker who obtains the VM image template

260 ADVANCES IN DIGITAL FORENSICS VI

-
4

/

VM Image Watermark |! | Watermarked
Template Generator VM Image
I 4

Watermark Information

Watermark Information
Database

-——— - ——

Database

- o ——

-~ — - — -

Figure 1. Watermark generation and detection.

would be able to compute the watermark fragment files as the
difference between the template VM image and the watermarked
VM image files. Details of the watermark generation algorithm are
presented in Section 3.2.

Watermark Fragment Files ~—— Watermarked VM Image

/etc/yum/aaa.conf @ ID: 5ac8183d-e2cb-4ad2-

/var/log/dummy.log \/ a185-5c3beb0c17b8

Watermark Information Database Table

ID VM Name Owner Watermark Fragment Files
5ac8183d-e2cb-4ad2- foo- foo /etc/yum/aaa.conf,
a185-5¢3beb0c17b8 desktop /var/log/dummy.log
42be8a40-5e6d-4677- bar- bar /usr/local/bin/cmd,
84fb-e387f5638264 desktop /etc/dummy.conf

Figure 2. Sample records in the watermark information database.

. Watermark Information Database: The watermark informa-
tion database (WI-DB) stores the identifier of each VM image
and its attributes. The identifier for a VM image is a universally
unique identifier (UUID). The attributes include the names of the
watermark fragment files, VM owner, etc. (Figure 2).

Only authorized users should be permitted to read and write WI-
DB records. An attacker with read/write access could alter WI-
DB records or identify and delete the watermark fragment files
embedded in a VM image.

s Watermark Detector: The watermark detector identifies a VM
using the watermark fragment files embedded in the target VM im-
age based on WI-DB records. When an unauthorized leak of a VM
image is suspected, the administrator may perform the detection
process to identify the VM image and its owner.

Tadano, et al. 261

1D VM Name Owner Watermark Fragment Files
5ac8183d-e2cb-4ad2- foo-desktop | foo /etc/yum/aaa.conf,
a185-5c3beb0c17b8 /var/log/dummy.log
- 42be8a40-5e6d-4677- bar-desktop | bar /usr/local/bin/cmd,
84fb-e387f5638264 /etc/dummy.conf —
-» ...

3.2

Directory Tree on VM

Target VM Image

O

2. Search the files in the VM Image

r 3

ID: unknown

Watermark Information Database Table

1. Obtain the names of the Watermark Fragment Files

Figure 3. Watermark detection.

Figure 3 illustrates the detection process. If the identifier of the
target VM can be guessed, the watermark generator looks up the
corresponding WI-DB record. Otherwise, the watermark detector
compares the watermark fragment file names in WI-DB records
with those in the target VM image. The watermark generator
then outputs a certainty value of the identifier of the target VM
image. The certainty value is computed as the percentage of the
names of the watermark fragment files in the WI-DB record that
match file names in the VM image. Note that some watermark
fragment files may have been deleted or renamed on purpose or by
accident.

Watermark Generation Algorithm

This section briefly describes the process of generating the watermark
fragment files for the target VM image. The algorithm has five steps.

Step 1: Input the parameters required for watermark generation.

Step 2: Number the directories in the target VM image in dictio-
nary order.

Step 3: Select the directories to embed watermark fragment files.

Step 4: Generate the names of the watermark fragment files to
be created.

Step 5: Generate the contents of the watermark fragment files for
the directories selected in Step 3.

262 ADVANCES IN DIGITAL FORENSICS VI

Table 1. Directory code list.

Number Directory Name

1 /

/etc/
/etc/init.d/
/etc/ldap/
/etc/skel/
/etc/ssh/
/etc/sysconfig/

N O U W N

Step 1 (Input Parameters for Watermark Generation): The
following input parameters are required for watermark generation:

s Number of Watermark Fragment Files: The larger the num-
ber of watermark fragment files, the more tamper-resistant is the
watermark. However, this increases the time required to generate
watermark fragment files.

s Excluded Directories: Some directories (e.g., temporary direc-
tories) should be excluded because files in these directories change
frequently.

m Excluded Suffixes: These are suffixes that should be excluded
from the names of the watermark fragment files.

s Bit Length: The bit length is a parameter used by the Blum-
Blum-Shub (BBS) algorithm [4] to generate cryptographically-sec-
ure pseudo-random numbers. This parameter affects the computa-
tional time and security, and is set to 1024 bits in our experiments.

Step 2 (Number the Directories in the Target VM Image):
The watermark generator searches all the directories in the target VM
image recursively and generates a “directory code list” (Table 1). The
excluded directories identified in Step 1 are not numbered. The directory
code of a template VM image can be reused when new watermarked VM
images are created from the same template VM image because they have
the same directory tree structure. This reduces the processing time.

Step 3 (Select Directories to Embed Watermark Fragment
Files): The watermark generator produces pseudo-random numbers
for the watermark fragment files input in Step 1. The values of the

Tadano, et al. 263

random numbers are limited to the range of directory codes. The wa-
termark generator extracts the names of directories corresponding to
the generated random numbers using the directory code list generated
in Step 2. The BBS pseudo-random number generation algorithm is
used to make the random numbers difficult for an attacker to predict.
Although this algorithm is computationally intensive, the experimental
results presented in Section 4.2 indicate that the overall performance of
the watermarking scheme is acceptable.

Step 4 (Generate the Names of Watermark Fragment Files):
The watermark generator creates the names of the watermark fragment
files that are embedded in the directories selected in Step 3. Portions of
the names of pre-existing files in the directories are modified to create
file names that are similar to those of the pre-existing files. A file name
is generated according to the following steps.

m Step 4.1: Get the names of existing files in the target directory.
Only regular files (not subdirectories, hidden files, etc.) whose
suffixes are not to be excluded are retrieved.

s Step 4.2: Enumerate all the substrings corresponding to the file
names. Each substring is obtained from the head (i.e., not includ-
ing the suffix) of a file name retrieved in Step 4.1. The result of
this step is the union of substrings for all the file names. For exam-
ple, if the target directory has a file named abc.txt, the possible
substrings are: abc, ab and a.

m Step 4.3: Compute “similarity groups” for each extracted sub-
string. A similarity group is a group of files in the target directory
that meets the following conditions: (i) the file name starts with
the substring (prefix) generated in Step 4.2; (ii) all the files have
the common suffix (e.g., .txt); and (iii) a similarity group con-
tains at least two files. For example, if there are five files in a
target directory {s1.txt, s2.txt, s3.dat, s4.dat, s5.conf} and
s is the substring, then two similarity groups can be computed:
{s1.txt, s2.txt} and {s3.dat, s4.dat}.

s Step 4.4: Compute the Dy, score for each similarity group:
Dgim = c1*lp+caxnp —c3*ly

where [, is the length of the prefix of the similarity group; ny is
the number of files in the similarity group; l4 is the mean value of
the difference between the length of the file name (excluding the

264 ADVANCES IN DIGITAL FORENSICS VI

suffix) and [, in the similarity group; and ¢, ¢, c3 are parameters
that are set to one. The similarity group with the highest D,
score is called the “prototype file group.”

s Step 4.5: Create the name of the new watermark fragment file.
One or more random letters are added to the tail of the prefix
of the selected prototype file group. The length of the added let-
ters (I;) is the length of the file name randomly selected from the
prototype file group (excluding the suffix and prefix). Finally, the
suffix of the files in the prototype file group is added to the file
name. For example, if the prefix is sample and the prototype file
group is {sample.dat, sample-bak.dat} and if sample-bak.dat
is selected, then [, = 4 and a possible name is sampledbha.dat.

Step 5 (Generate the Content of the Watermark Fragment
Files): The watermark generator creates the content and attributes
corresponding to each watermark fragment file. The content of a water-
mark fragment file is a randomly-generated byte sequence. Attributes
of a watermark fragment file are determined according to the following
rules. For timestamps (creation/modification/access) and file size, the
watermark generator assigns the mean values of the files in the prototype
file group to the new watermark fragment file. For other attributes such
as ownership and permission, the values corresponding to a randomly
selected file in the prototype file group are used.

3.3 Implementation

The digital watermarking scheme was implemented in Java 1.5. The
VMware Server virtualization software was employed. The command
vmware-mount.pl was issued to the VMware Server to mount the file
system on the VM image for embedding watermark fragment files. The
VM image of any file system or operating system, including Windows
and Linux, can be watermarked. The WI-DB was implemented using
MySQL 5.0.

4. Experimental Setup and Results

This section describes the experimental setup used to evaluate the wa-
termarking algorithm. Also, it presents the experimental results related
to watermark generation and detection.

4.1 Experimental Setup

A test environment was created to evaluate the performance of the
watermarking scheme. The environment included one physical host (Ta-

Tadano, et al. 265

Table 2. Test environment.

Physical Host

CPU Pentium 4 1.73 GHz Processor
Memory 1 GB RAM
Host OS Ubuntu Linux 8.04 Server
VMM VMware Server 2.0
Guest VMs
Guest OS Ubuntu Linux 8.04 CentOS 5.1
(JeOS edition) (default)
VM Image Size 183 MB 2,750 MB
(.vmdk file)
Directories 1,120 7,429

ble 2). Two template VM images of different sizes were used to clarify
the impact of size on the watermarking scheme. The VM images used
were an Ubuntu Linux 8.04 Server JeOS edition (minimum configuration
for virtual appliances) and a default installation of CentOS 5.1.

4.2 Experimental Results

This section presents our experimental results related to watermark
generation and detection.

Watermark Generation The VM image templates of Ubuntu and
CentOS were copied and a total of 10 and 100 watermark fragment files
were embedded in the two VM images. Each experiment was repeated
10 times and the average turnaround times were calculated.

Table 3. Turnaround times for watermark generation.

Av. Generation Time (sec) Av. Copying

10 Files 100 Files Time (sec)
Ubuntu Linux 8.04 13.121 24.001 6.903
CentOS 5.1 168.382 177.270 142.284

Table 3 presents the turnaround times for copying VM images and
generating watermarks. The experiments used previously-created direc-
tory codes of template VM images because the codes are generated only
the first time that the template VM images are used. The results in-
dicate that the time for watermark generation excluding the time for

266 ADVANCES IN DIGITAL FORENSICS VI

Table 4. Generated watermark fragment files.

File Names

/usr/share/zoneinfo/Pacific/kQGidyI
/etc/console-tools/v2uQizvontwL8
/1lib/modules/2.6.24-16-virtual/kernel/sound/usb/snd-usb-INc.ko
/usr/1ib/klibc/bin/hso.shared
/usr/1ib/perl/5.8.8/10/Socket/vS9JKE. pm
/usr/1ib/python2.5/wsgiref/hG272nT.pyc
/usr/share/debconf/jAGX7mQ. sh
/usr/share/zoneinfo/Mexico/irQ7KA
/usr/share/zoneinfo/posix/Chile/5XwjA

copying is essentially independent of the size of the template VM image.
The turnaround times drop when faster storage devices are employed.

Table 4 lists the generated watermark fragment files. The file names
snd-usb-INc.ko and hso.shared are relatively difficult to distinguish
from the pre-existing files in the target directories. In contrast, file
names such as kQGidyI are easily distinguishable. In general, when
there are many files in the target directory whose names have common
extensions and long common substrings, the generated file name(s) tend
to be indistinguishable. For example, the file snd-usb-INc.ko belongs
to /lib/modules/2.6.24-16-virtual/kernel/sound/usb/ whose pre-existing
files are snd-usb-audio.ko and snd-usb-1ib.ko. Meanwhile, if only a
few file names have common substrings/extensions in the target direc-
tory, the generated file name(s) tend to be contrived.

Watermark Detection Watermark detection experiments were con-

ducted to identify 10 and 100 watermark fragment files from the water-
marked Ubuntu 8.04 and CentOS 5.1 VM images.

Table 5. Turnaround times for watermark detection.

Av. Detection Time (sec)

10 Files 100 Files
Ubuntu Linux 8.04 7.524 7.549
CentOS 5.1 7.526 7.573

Table 5 presents the average turnaround times for watermark detec-
tion based on ten repetitions. The results indicate that the time taken
to detect the watermark is almost independent of the size of the water-
marked VM image and the number of watermark fragment files.

Tadano, et al. 267

5. Conclusions

The digital watermarking scheme for VM images is independent of file
systems, file formats, operating systems, kernel versions and hardware.
Also, experiments demonstrate that watermark generation and detection
are both fast and effective.

Our future work will focus on enhancing the tamper-resistant charac-
teristics of the watermarking scheme. Several attacks could be devised
to remove or modify VM image watermarks. For example, watermarks
could be detected using a machine learning algorithm such text cluster-
ing [9] to discriminate embedded files from pre-existing files based on
file name string features. Another attack could use information from
elsewhere in the VM such as the i-node numbers of files. Files installed
at a given time are assigned successive i-node numbers; a file with an
i-node number that is out of sequence could correspond to an embedded
file. Other problems to be investigated include having the contents of
embedded files resemble those of pre-existing files, and augmenting the
scheme with other data hiding approaches to enhance tamper resistance.
Finally, our research will investigate the application of the watermarking
scheme to other digital content such as tar and zip archives.

References

[1] Amazon Web Services, Amazon Elastic Compute Cloud, Seattle,
Washington (aws.amazon.com/ec2).

[2] Amazon Web Services, Amazon Simple Storage Service, Seattle,
Washington (s3.amazonaws.com).

[3] Amazon Web Services, ec2-download-bundle, Seattle, Wash-
ington (docs.amazonwebservices.com/AmazonEC2/dg/2006-10-01
/CLTRG-ami-download-bundle.html).

[4] L. Blum, M. Blum and M. Shub, Comparison of two pseudo-
random number generators, in Advances in Cryptology: Proceed-
ings of Crypto 1982, D. Chaum, R. Rivest and A. Sherman (Eds.),
Plenum, New York, pp. 61-78, 1982.

[5] K. Eckstein and M. Jahnke, Data hiding in journaling file systems,
Proceedings of the Fifth Annual Digital Forensic Research Work-
shop, 2005.

[6] A. McDonald and M. Kuhn, StegFS: A steganographic file system
for Linux, Proceedings of the Third International Workshop on In-
formation Hiding, pp. 463477, 2000.

268 ADVANCES IN DIGITAL FORENSICS VI

[7] F. Perez-Gonzalez and J. Hernandez, A tutorial on digital water-
marking, Proceedings of the Thirty-Third IEEE International Car-
nahan Conference on Security Technology, pp. 286292, 1999.

[8] N. Quynh and Y. Takefuji, A novel approach for a file-system in-
tegrity monitor tool for a Xen virtual machine, Proceedings of the
Second ACM Symposium on Information, Computer and Commu-
nications Security, pp. 194-202, 2007.

[9] T. Segaran, Programming Collective Intelligence: Building Smart
Web 2.0 Applications, O’Reilly, Sebastopol, California, 2007.

