Fuzzy Inference Systems for Automatic Classification of Earthquake Damages

Abstract : This paper presents efficient models in the area of damage potential classification of seismic signals. After an earthquake, one of the most important actions that authorities must take is to inspect structures and estimate the degree of damages. The interest is obvious for several reasons such as public safety, economical recourses management and infrastructure. This approach provides a comparative study between the Mamdani-type and Sugeno-type fuzzy inference systems (FIS). The fuzzy models use a set of artificial accelerograms in order to classify structural damages in a specific structure. Previous studies propose a set of twenty well-known seismic parameters which are essential for description of the seismic excitation. The proposed fuzzy systems use an input vector of twenty seismic parameters instead of the earthquake accelerogram and produce classification rates up to 90%. Experimental results indicate that these systems are able to classify the structural damages in structures accurately. Both of them produce the same level of correct classification rates but the Mamdani-type has a slight superiority.
Type de document :
Communication dans un congrès
Harris Papadopoulos; Andreas S. Andreou; Max Bramer. 6th IFIP WG 12.5 International Conference on Artificial Intelligence Applications and Innovations (AIAI), Oct 2010, Larnaca, Cyprus. Springer, IFIP Advances in Information and Communication Technology, AICT-339, pp.368-375, 2010, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-642-16239-8_48〉
Liste complète des métadonnées

Littérature citée [11 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01060638
Contributeur : Hal Ifip <>
Soumis le : vendredi 17 novembre 2017 - 15:46:27
Dernière modification le : mercredi 27 décembre 2017 - 14:04:02
Document(s) archivé(s) le : dimanche 18 février 2018 - 16:09:59

Fichier

AlvanitopoulosAE10.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Petros-Fotios Alvanitopoulos, Ioannis Andreadis, Anaxagoras Elenas. Fuzzy Inference Systems for Automatic Classification of Earthquake Damages. Harris Papadopoulos; Andreas S. Andreou; Max Bramer. 6th IFIP WG 12.5 International Conference on Artificial Intelligence Applications and Innovations (AIAI), Oct 2010, Larnaca, Cyprus. Springer, IFIP Advances in Information and Communication Technology, AICT-339, pp.368-375, 2010, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-642-16239-8_48〉. 〈hal-01060638〉

Partager

Métriques

Consultations de la notice

110

Téléchargements de fichiers

23