Forecasting Euro - United States Dollar Exchange Rate with Gene Expression Programming

Abstract : In the current paper we present the application of our Gene Expression Programming Environment in forecasting Euro-United States Dollar exchange rate. Specifically, using the GEP Environment we tried to forecast the value of the exchange rate using its previous values. The data for the EURO-USD exchange rate are online available from the European Central Bank (ECB). The environment was developed using the JAVA programming language, and is an implementation of a variation of Gene Expression Programming. Gene Expression Programming (GEP) is a new evolutionary algorithm that evolves computer programs (they can take many forms: mathematical expressions, neural networks, decision trees, polynomial constructs, logical expressions, and so on). The computer programs of GEP, irrespective of their complexity, are all encoded in linear chromosomes. Then the linear chromosomes are expressed or translated into expression trees (branched structures). Thus, in GEP, the genotype (the linear chromosomes) and the phenotype (the expression trees) are different entities (both structurally and functionally). This is the main difference between GEP and classical tree based Genetic Programming techniques.
Type de document :
Communication dans un congrès
Harris Papadopoulos; Andreas S. Andreou; Max Bramer. 6th IFIP WG 12.5 International Conference on Artificial Intelligence Applications and Innovations (AIAI), Oct 2010, Larnaca, Cyprus. Springer, IFIP Advances in Information and Communication Technology, AICT-339, pp.78-85, 2010, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-642-16239-8_13〉
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01060654
Contributeur : Hal Ifip <>
Soumis le : vendredi 17 novembre 2017 - 14:42:13
Dernière modification le : lundi 18 décembre 2017 - 01:11:01
Document(s) archivé(s) le : dimanche 18 février 2018 - 15:33:06

Fichier

AntoniouGTL10.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Maria A. Antoniou, Efstratios F. Georgopoulos, Konstantinos A. Theofilatos, Spiridon D. Likothanassis. Forecasting Euro - United States Dollar Exchange Rate with Gene Expression Programming. Harris Papadopoulos; Andreas S. Andreou; Max Bramer. 6th IFIP WG 12.5 International Conference on Artificial Intelligence Applications and Innovations (AIAI), Oct 2010, Larnaca, Cyprus. Springer, IFIP Advances in Information and Communication Technology, AICT-339, pp.78-85, 2010, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-642-16239-8_13〉. 〈hal-01060654〉

Partager

Métriques

Consultations de la notice

71

Téléchargements de fichiers

21