A Soft Computing Approach for Osteoporosis Risk Factor Estimation

Abstract : This research effort deals with the application of Artificial Neural Networks (ANNs) in order to help the diagnosis of cases with an orthopaedic disease, namely osteoporosis. Probabilistic Neural Networks (PNNs) and Learning Vector Quantization (LVQ) ANNs, were developed for the estimation of osteoporosis risk. PNNs and LVQ ANNs are both feed-forward networks; however they are diversified in terms of their architecture, structure and optimization approach. The obtained results of successful prognosis over pathological cases lead to the conclusion that in this case the PNNs (96.58%) outperform LVQ (96.03%) networks, thus they provide an effective potential soft computing technique for the evaluation of osteoporosis risk. The ANN with the best performance was used for the contribution assessment of each risk feature towards the prediction of this medical disease. Moreover, the available data underwent statistical processing using the Receiver Operating Characteristic (ROC) analysis in order to determine the most significant factors for the estimation of osteoporosis risk. The results of the PNN model are in accordance with the ROC analysis and identify age as the most significant factor.
Type de document :
Communication dans un congrès
Harris Papadopoulos; Andreas S. Andreou; Max Bramer. 6th IFIP WG 12.5 International Conference on Artificial Intelligence Applications and Innovations (AIAI), Oct 2010, Larnaca, Cyprus. Springer, IFIP Advances in Information and Communication Technology, AICT-339, pp.120-127, 2010, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-642-16239-8_18〉
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01060659
Contributeur : Hal Ifip <>
Soumis le : vendredi 17 novembre 2017 - 14:18:47
Dernière modification le : mercredi 27 décembre 2017 - 14:04:02

Fichier

MantzarisAIKP10.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Dimitrios Mantzaris, George Anastassopoulos, Lazaros Iliadis, Konstantinos Kazakos, Harris Papadopoulos. A Soft Computing Approach for Osteoporosis Risk Factor Estimation. Harris Papadopoulos; Andreas S. Andreou; Max Bramer. 6th IFIP WG 12.5 International Conference on Artificial Intelligence Applications and Innovations (AIAI), Oct 2010, Larnaca, Cyprus. Springer, IFIP Advances in Information and Communication Technology, AICT-339, pp.120-127, 2010, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-642-16239-8_18〉. 〈hal-01060659〉

Partager

Métriques

Consultations de la notice

54

Téléchargements de fichiers

2