N

N

Decentralized Services Orchestration Using Intelligent
Mobile Agents with Deadline Restrictions
Alex Magalhaes, Lau Cheuk Lung, Luciana Rech

» To cite this version:

Alex Magalhaes, Lau Cheuk Lung, Luciana Rech. Decentralized Services Orchestration Using In-
telligent Mobile Agents with Deadline Restrictions. 6th IFIP WG 12.5 International Conference on
Artificial Intelligence Applications and Innovations (AIAI), Oct 2010, Larnaca, Cyprus. pp.246-253,
10.1007/978-3-642-16239-8 33 . hal-01060674

HAL Id: hal-01060674
https://inria.hal.science/hal-01060674
Submitted on 17 Nov 2017

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://inria.hal.science/hal-01060674
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Decentralized Services Orchestration using I ntelligent
Mobile Agentswith Deadline Restrictions

Alex Magalhaes, Lau Cheuk Lung, Luciana Rech
Computer Science and Statistics Department- INE -,CTC
Federal University of Santa Catarina — UFSC
P.0O.B 476, post code 88040-900 — SC, Brasil.

{alex, lau.lung, luciana.rech @ inf.ufsc.br}

Abstract. The necessity for better performance drives serdochestration
towards decentralization. There is a recent appredwre the integrator - that
traditionally centralizes all corporative servi@® business logics - remains as
a repository of interface services, but now lackkriow all business logics and
business workflows. There are several techniquesyulis recent approach,
including hybrid solutions, peer-to-peer solutionand trigger-based
mechanisms. A more flexible approach regarding renment configuration
and not fully explored in services orchestratiocht®logy is the use of
intelligent mobile agents to execute it. In thip@a we present new adaptive
heuristics for mobile agents to execute the deabmdition of orchestration
through missions (services) that correspond tcsthges of business flow, with
the ability to trade-off the quality of the resulith the deadline of the mission.
Some test case scenarios are presented and ablttte are analyzed pointing
the advantages and disadvantages of each heuristic.

Keywords: Intelligent Mobile Agents, Real-Time, Distributeds$gms.

1 Introduction

The evolution of the WWW brought the need for mooenplex and scalable systems.
To address this need, software architects begams¢éoa composition of services
known as service orchestration. Service orchestrairovides a unique interface for
each composite service and coordinates severalleinggrvices using additional
business logic to execute this task of coordinattnongly based on XML and Web
Services, service orchestration quickly became réference design in Service
Oriented Architecture (SOA [1]), centralizing albvkflow at an integrator that uses
languages as BPEL (Business Process Execution hgayfor service coordination.

As critical systems began to use SOA, performarmoaime an issue and there was
room for improvement. To achieve better performandecentralization and
orchestration were combined and this new approaach aensidered very promising
by authors [2] [3] [4]. In decentralized orchedtat the integrator still holds all
composite services interfaces, but it no longerduasrol over the composite services
workflows. In this approach, all business logic amdrkflow logic is distributed
among the services that forms the composite sexvice

The main motivation for decentralized orchestrati®ithe achievement of better

This work was partially supported by CNPq througbgesses 472754/2008-4 and
472801/2008-2 and CAPES.

performance by critical mission and real time systavith a deadline. These systems
need the benefits of a centralized repository tdrfaces for composite services, but
also need to address the deadline restrictionsiaif systems. Bearing this in mind,
there has been proposed hybrid solutions basedmuigr technologies [4] [5].

In this paper, we propose a hybrid approach usitgligent mobile agents (MA).
The integrator deploys a MA in the network that l@snission, for instance, to
calculate the final price. The MA will have optiossch as obtaining the currency
exchange rate directly going to the internatiorehkbweb service or go to a local
server that does not have this information in temaé. In this scenario, the sequence
of nodes visited by the MA to complete its missisncalled itinerary, and the
itinerary will be defined by the trade-off betwedsadline of the mission and the
desired QoS level. A MA may have previous knowled§all the nodes it will need
to visit to complete its mission or it does not &éany previous knowledge of the
network and will discover its itinerary from node mode, in such case, the MA is
called myope.

The imprecise computing for MA with a deadline vamigjinally presented in [6],
along with some simple heuristics to define the BlAtinerary. Differently of the
previous mentioned works, in this paper we willgamt new adaptive heuristics for
MA, bringing as contribution the combination of eodnobility and real-time
constraints in decentralized services orchestratibith this objective, this paper
presents a MA hybrid solution for decentralizedhestration.

The hybrid solution for orchestration using MA fliff the requirements of high
performance and real-time deadlines of a decemt@lpbrchestration. However, this
paper does not have as objective the specificabbnthe architecture of a
decentralized orchestration using MA. The architextsed in this paper is similar to
the solutions presented in [2] [3] [4], with thevadtage that MA architecture is
already control-centric (through the MA containergsolving one of the major
problems of decentralization: the environment aguntation.

The main objective of this paper is to present mewristics that define the MA
itinerary during the flow of a composite servicéeEe composite services workflows
will be represented here by the MA missions. Ead$sion is composed of several
tasks, which correspond to the internal servicegaath composite service. In this
context, the heuristics for itinerary definition ieedesigned to guarantee that the MA
missions are completed in time so that its resurktsuseful for the application.

In this paper, we present three heuristics of lawnputational cost and the
performance of these heuristics will also be comgan different missions and with
different deadline constraints. A real MA platfobased in Java has been chosen, the
JADE framework [7], in order to evaluate the penfance of the system.

2 Reéated works

Several works consider decentralized orchestratach one is singular, presenting
its advantages and disadvantages, but all havendré to address the performance
issue that traditional (centralized) orchestratfbassociated with.

In [4] is presented a hybrid solution using thergeepeer model. It is based on the

Montage workflow, a system for analysis of astrore@himages developed at
Caltech. Although it has better performance thantreéized orchestration, the
complexity of this environment maintenance andféue that each peer of the peer-to-
peer network is an integrator itself make this giesnore complex than attractive.

In [3] is presented another hybrid solution usihg toncept of Service Invocation
Triggers. In this solution, a lightweight triggexchnology is proposed to execute the
data flow, using a decentralized service controlthéugh it has a consistent
architecture, the fact that the new trigger techgglis not based on any mature
technology presents a problem, making the biggestribution of [3] the solution
design architecture and not its new technology. &bthors mentioned the MA
technology, but they argue about MA security indte& evaluating it as potential
solution for the problem. In the present paper e@at address the security issue.

In [5] is presented a hybrid solution for decertiation based on the concept of
federated systems. They use Proxies in order tarooritate the integrator and each
task of the service, and each Proxy groups a fekstthat compose its federation.
This solution is very interesting from the orgati@aal point of view, since each
federation can hold an entire area of knowledgéhefcorporation, but it lacks the
commitment to improve the performance of the seic

In [8] is proposed a system based on agents antieoMNAISOFT framework,
which is a repository for business models. The vaaksists of using MA to integrate
several repositories located in distinct serverd tanallow the interchangeability of
business models among them. Despite the fact tlolateis not explicitly mention the
orchestration aspect of the work, the article presan effort to decentralize the
ANAISOFT repository, with the advantage of using NbAdo this.

3 Mode Description

This section presents a new approach to assistithén the itinerary definition for
each new mission. In orchestration, each requeghd@dntegrator corresponds to a
new MA mission. The three new adaptive heuristed been developed to define the
MA'’s itinerary and also achieve the performance deddline requirements of the
decentralized orchestration. The main objectivahefse heuristics is to achieve a
good performance on every deadline band, i.e.e$pand to soft, medium and hard
deadlines while attending to the QoS defined byctlet.

In [6], after the performance’s evaluation, we wabde to correlate each heuristics
to a type of deadline. The loose deadline was ddfias the one where the Greedy
Heuristic had the best performance; for tight diead, where the Lazy Heuristic had
optimal performance. The adaptive heuristics preskim this paper are based on the
simple heuristics described in [6]. We will briefigview these simple heuristics that
were the inspiration for the heuristics proposethapresent paper, in order to allow
a better understanding of the adaptive heuristits vwariation at the departure that
will be presented later on. The Lazy Heuristic eses the service as fast as possible,
disregarding the level of Qo0S. The Greedy Heuristicwhenever there is an
alternative route — will choose the one with thghlaist level of QoS, despite the
execution time, but respecting the rules of thesiars

It is important to point out that differently frorf6], in this paper we are
considering services with variable QoS, i.e., ladl services that compose the mission
have a variable QoS proportional to execution tiffleis concept of variable QoS,
called anytime algorithms, was presented in [9].

3.1 Greedy Heuristic with Variable Decrease at Start (Greedy-VD)

The Greedy-VD heuristic is a variation of the Gngdtburistic [6]. As this new
version is based on the concept of anytime algostfe], the level of QoS is variable
depending on the execution time of each service GREEDY-VD strategy is to
start with the classical behavior of Greedy heiarifd] and if this behavior is not
efficient enough for the mission’s objective, theutistic will limit the execution time
for each service at departure until it reachesdmissible level of QoS in agreement
with the mission deadline. This gradual reductidrite execution time is directly
associated with an adjustment factor - in thichrtihe adjustment factor was of 10%
for each new trip of the intelligent agent. I.&g heuristics starts with the objective of
reaching the maximum level of QoS (100%) and griylaajusts it until it is capable
of meet the deadline and finishing the mission essfully.

As the MA in the next mission uses the same belnafdecision making) and
considering that it is a myopic MA [10], this hestits goal is to find the “optimal
percentage”, that will allow the MA to reach theximaum level of QoS, respecting
deadline of the current mission and spending theima@l number of trips
(consecutive missions) possible. For example, uamgdjustment factor of 10%, the
MA in its third trip, if it has not found the optahpoint, it can perform only 80% of
the resources of the mission. This is possible imzave are using variable resources
and the concept of anytime algorithms.

3.2 Lazy heuristicwith VariableIncrease at Start (Lazy-VI)

The Lazy-Vl is a variation of the Lazy heuristiepiously adapted for MA. This new

version is also based on the concept of anytimeridfgns, so the execution time of
the services are variable, allowing the heuristit to reach the maximum level of
QoS for every service of the mission. The Lazy Isticr has as main objective to

finish the mission in the best time possible, desphe level of QoS. The main

problem with this strategy is that whenever it fesm to improve the level of QoS of

a mission, it will ignore it and will keep goingrfthe fastest execution time possible.
The need to repeat the mission allowed us to matiiéyclassical Lazy heuristic in

order to maximize the level of QoS, since the #&eguQoS after each MA'’s visit to a

node is proportional to the execution time of esetvice.

Lazy-VI heuristic has the inverse behavior of thedaly-VD heuristic. Initially, it
uses the classical Lazy behavior (executing themaihnumber of blocks allowed for
each service of the mission) and in the next tdpshe same mission it gradually
increases the percentage of execution for eaclicegreonsidering the predefined
adjustment factor. The strategy of this heurisikgdo start as a traditional Lazy
algorithm, trying to improve the level of QoS faxah mission, trip by trip. After the

first trip of the mission, the heuristic increasies percentage of the level of QoS until
the mission does not meet its deadline or it rem¢he maximum level of QoS for
each service. In case the mission does not megeddline, the heuristic assumes the
last percentage state as the optimal percentageectition of the level of QoS.

3.3 Greedy Heuristic with Utility Function based on Bipartition (Greedy-FB)

Greedy-FB presents a new approach for this kingroblem. This new version is
based on the Greedy heuristic, on the concept yifrae algorithms and also on the
concept of bipartition of the graphs theory. Thésufistic is capable of executing the
services partially and uses a strategy (utilityction) of bipartition of the level of
QosS, in order to meet the deadline and to get tieimum level of QoS for each type
of deadline. The strategy of this heuristic isrtitiate as a traditional Greedy heuristic
in search of the optimal point of the level of QoBeach service. To accomplish this,
the Greedy-FB heuristic uses a utility functiondshsn bipartition, in order to speed
up the determination of this optimal point.

When executing its first trip, in case the missaoes not meet its deadline, the
heuristic bipartitions the percentage interval lotks of the service to be executed. In
the second trip, this interval corresponds to [@Q]1then the heuristic will try the
execution of 50% of the blocks for each servicethimthird trip, in case the deadline
is not met yet, the heuristic partitions one mameetthe interval in order to meet the
deadline, and now the interval corresponds to [l], @&d the new percentage of
blocks for execution is of 25%. However, in case thission’s deadline is met in the
third trip, the heuristic try to improve the accuatad level of QoS for the mission
and it bipartitions the superior interval (the imed corresponding to [50, 100] and
thus the new percentage of execution is 75%). Tewistic follows this strategy of
bipartitions until it meets the mission deadlinghaa previously established range.

4. Performance Analysis

The purpose of the experiments is to compare theidtes behavior and to evaluate
its efficiency in different scenarios consideritgdeadlines.

4.1. Experiments Conditions

For these experiments we used 18 computers of téd4th clock speed between

2.0GHz and 3.2GHz, and 2.0 Gb of RAM. The adoptetivark was a 802.11g

wireless network of 54 Mb/s. Each one of the computvas equipped with a Java
Virtual Machine JDK 6.15 to support the JADE platfp the virtual environment

supported by FIPA/IEEE to execute applications aseMobile Agents.

4.1.1. Environment Configuration
For this experiment we considered 18 services @&ndotles, where each node hosts a
service in the environment. To the heuristics destrate its flexibility and

capabilities, it is necessary that they can choibge optimal itinerary for their
missions, and for that the 18 services are divided kinds of services (each kind
contains the same kind of information, regardlesshe node), i.e., each kind of
service is represented in more than a computdreohétwork. Whenever possible, we
placed each node of the same kind of service inpeens with different clock speed,
in order to better represent a real environment.

The execution time of a redundant service is carsidl different in every
computer where it is replicated, in order to betepresent a real scenario where
different machines have different versions of tftveare that corresponds to the
service. Each mission of the MA is composed of kirels of services, whether there
is an order of execution or not. Each of the héigesvaluates the itinerary according
to its algorithms, service after service, or evldaamore than a service at a time,
whenever the order of execution does not exist.

We randomly generated 20 missions, all composedivef different kinds of
services chosen amongst the 7 kinds of availabteices. We did not allow
repetition. The order of execution is also varialbbere a mission may have groups
of kinds of services with and without precedenadeor The combinations of kinds of
services for the mission offer thousand of possilbiangements.

For each mission, we compute the total time ofrtligsion and the accumulated
level of QoS of the mission. The total time of théssion is composed by the time of
each service execution, represented by the quetinmg of the processor and the
execution time of the service, and also by the M#&vel time from one node to
another, respecting the network latency at the nmbroéthe trip. The accumulated
level of QoS of the mission is represented by tira sf every level of QoS of every
service executed. Each service is divided in bloskexecution and each block
executed represents a part of the sum in the itha@lilevel of QoS of the executed
service. This division in blocks follows the any&nalgorithms strategy [9], in order
that the individual level of QoS for each servisaivalue between the maximum and
the minimum level of QoS for this service on a sfieaode.

4.2. Evaluation Results

To show these heuristics performance in the exparinwe considered 3 different
missions for 3 different deadline bands. The mdijective of this experiment using
different itineraries and deadlines is to verife thehavior of the MA heuristics on
different missions. As this MA does not carry atdiig of the trips, it needs a short
time to calibrate itself until if it defines the tpal percentage of execution time for
each service that composes the mission, whichrefitct in the best level of QoS for
the heuristic in that kind of mission and deadlifiable 1 presents the performance of
the three adaptive heuristics on hard deadlinedhéli@r understand of the results, we
have chosen a single deadline of this band (D=lb)lable 1, NS represents the
number of steps (each step represents a full M#,tdolumns T and Q represents,
respectively, the traveling time and the level afSQof each mission. The shadowed
tuples show the best indices reached for each steurHowever, they bold values
indicate the best performances of each missioth®ithree heuristics. For example,
for the first mission, the heuristic that best perfance considering a balance of level

of QoS and meeting the deadline was the GreedyiFBias taken seven trips
(executions using different percentages of exenltim reach its optimal stage.
Analyzing the number of steps (number of compleps tof the intelligent agent), the
Lazy-VI heuristic was fastest for the first missioreeding fewer steps to reach the
optimal percentage of execution for each service.

Table 1. Performance of the Adaptive Heuristics for missiaith hard deadlines.

M1 M2 M3
g‘ Greedy-VD| Lazy-VI | Greedy- |Greedy-VD| Lazy-VI |Greedy-FB|Greedy-VD| Lazy-VI | Greedy-FB
FB
TIQ|T[Q|T|[Q|T Q]| T Q| T | Q| T |[Q [T |Q|T]|Q
1(58,4| 55 | 58,4 55| 3,8 5| 54,4 53 | 54,4| 53 | 3,7 5 52,4 55 | 52,4 55 | 3,8 5
2|544| 51 29,1 28 | 76| 10| 47,9 50 | 279 27| 74 10| 489 51 [26,9 28 | 76| 10
3| 49 46 | 16,2 15 | 9,6 13 43 44| 15,6 15| 9,3 13 44 46| 155 16 | 9,6 13
4140,7| 39 | 10,8/ 10 | 13,4 18 | 38,1 39 | 10,4| 10 13 18| 383 40 | 98| 10|13,4| 18
5(29,9| 28 | 13,7| 13 | 14,8/ 20 | 33,2| 34 | 12,3 12 |149| 21 | 33,4 35 | 11,4| 12 | 13/4| 18
6(24,1| 23 |14,8| 14 | 18,6 25 | 25,7| 27 | 14,2| 14 | 149| 21 | 26,9| 28 |14,1| 15 | 13,4| 18
7119,1| 18 | 14,8| 14 [14,8| 20 | 21,5 22 | 14,2 14 | 149| 21 22| 23| 14,34 15 | 13,4 18
8113,7| 13 | 14,8| 14 | 14,8 20 | 15,6| 17 14,2 14 | 149| 21 17,1 18 | 14,1 15 | 13,4| 18
9113,7| 13 | 14,8] 14 | 14,8| 20 [11,7| 12 142 14 | 149| 21 | 11,4 12 | 14,1] 15 | 13,4| 18
&0 R 60
= LR £ @ o -
o 40 \ \ @ 0
© § 3 =
Ex * £ \
N =S N
o 4 _ P v b L el ..
g i Ezn - \.‘_
2w g B e
i3 o
i T T . T
o1 2 3 4 5 B 7T 8 8 10 001 2 3 4 5 & 7 8 9 1w
(a) Number of Steps (b) Number of Steps
—e— Greedy-¥D (RT) —a— Greedy-FB (RT) —a&— Lazy-vl (RT)
- = = = Greedy-vD (B) Gready-FB (8) — = = LazyVl (B

Fig. 1. Performance of Adaptive Heuristics using DeadlibgHard).

For second and third missions, the heuristic thesgnted the best performance
was the Greedy-FB heuristic, reaching the optimedl of QoS in the fewest number
of steps. Using a Bipartition Utility Function, tl@&reedy-FB heuristic was expected
to reach the optimal percentage quicker than therdbeuristics when the band of
deadline was not too hard. The results of the exy@et proved this expectation. And
also as expected, the Greedy-VD heuristic, didreath the best indices for the hard
deadline, needing a higher number of steps to atlespercentage of the level of
QoS and reach its optimal point. It is important goint out, to facilitate the
understanding of the results, on Table 1 we onbwad the results for deadline 15.
Other hard deadline values presented similar esult

Figure 1 present graphics that will contributette tinderstanding of the behaviors
of each adaptive heuristic. Observing the graphies can notice that, even for
different missions, the heuristics behavior is BmiThe graphic 1(a) illustrates the
behavior for the first mission. We can notice tthet Greedy-FB heuristic is the first

one to reach a travel time close enough to theloheatb the mission (step seven).
The ellipse evidences in the graphic the “optimaing reached by each of the
heuristics. We can also point out that after thatitoal point” the level of QoS of the
missions remains the same. Graphic 1(b) represhetsindices reached by the
adaptive heuristics on mission two.

5. Conclusion

In a corporative environment, critical mission aedl time systems generally suffer
with centralized architectures as is service orthgan. In this article the use of MA
was proposed to decentralize the orchestrationndJsi similar architecture for
decentralized orchestration already presentedawigus works, we present three new
heuristics for the MA'’s itinerary definition thatilvassist on orchestration. These
heuristics use an adjustment factor to change tineber of blocks executed in each
service and therefore the level of QoS of the rmissirespecting the mission’s
deadline and attending to the client’s specifiaaio

All these heuristics are of lightweight computatibnost, a necessary condition to
prove MA's viability as an architecture componeat flecentralized orchestration,
reminding that is not the objective of this artitbepresent this new architecture, so
we need to assume that some of the nodes thabewisited by the MA are of low
computational power. All the heuristics used thenmise of the myopia of the MA,
i.e., the agent doesn't know the complete workflofvthe composite service and
depends on this hybrid architecture of centraliaechestration, to create composite
services, and decentralized orchestration, soghdces have knowledge of the data
flow. The experiment was able to prove that MA isflexible approach for
decentralized orchestration, where the agent igldapof adapting its behavior to
reach different levels of QoS and successfully sidet desired deadlines.

Reference

=

OASIS. “Reference Model for Service Orienfedhitecture 1.0”. Committee Specification, (2006).

2. Barker, A.; Weissman, J.; Hemert, J. "The Catailarchitecture: avoiding workflow bottlenecks
caused by centralized orchestration" Cluster ComguVvol. 12, Issue 2, pp.221--235 (2009)

3. Binder, W.; Constantinescu, |.; Faltings, B. tBetralized Orchestration of Composite Web Services
Proceedings of the IEEE International Conferenctab Services, pp.869--876 (2006).

4. Barker, A.; Weissman, J.; Hemert, J. "Elimingtifhe Middleman: Peer-to-Peer Dataflow" Proc. of
the 17th international symposium on High perforneadistributed computing, pp.55--64 (2008)

5. Kyprianou, N "Hybrid Web Service OrchestratidnSc Thesis, The University of Edinburgh (2008)

6. Rech, L., Oliveira, R., Montez, C. “Dynamic Dmiténation of the Itinerary of MA with Timing
Constraints”. IAT 2005 IEEE/WIC/ACM Int.Conf. ontklligent Agent Technology, pp. 45--50 (2005)

7. Bellifemine F., Poggi A., Rimassa G., "DevelapiMulti-agent Systems with JADE", Intelligent
Agents VIl Agent Theories Architectures and Langsded. Springer (2001)

8. Schacke, A.; Dittrich, K.; Schonhoff, M. "Rezaition of an Agent-based federated system foriricgad
workflows" The University of Zurich (2001)

9. Garvey, A. and Lesser V. "A survey of researclieliberative real-time artificial intelligenceThe
Journal of Real-Time Systems (1994)

10. Rech, L., de Oliveira, R., et. al. "Determipatiof the Itinerary of Imprecise Mobile Agents ugian

Adaptive Approach"”. 13th IEEE Int. Conf. on Emegyifiechnologies and Factory Automation (2008)

