A Novel Feature Selection Method for Fault Diagnosis

Abstract : A new method for automated feature selection is introduced. The application domain of this technique is fault diagnosis, where robust features are needed for modeling the wear level and therefore diagnosing it accurately. A robust feature in this field is one that exhibits a strong correlation with the wear level. The proposed method aims at selecting such robust features, while at the same time ascertain that they are as weakly correlated to each other as possible. The results of this technique on the extracted features for a real-world problem appear to be promising. It is possible to make use of the proposed technique for other feature selection applications, with minor adjustments to the original algorithm.
Type de document :
Communication dans un congrès
Harris Papadopoulos; Andreas S. Andreou; Max Bramer. 6th IFIP WG 12.5 International Conference on Artificial Intelligence Applications and Innovations (AIAI), Oct 2010, Larnaca, Cyprus. Springer, IFIP Advances in Information and Communication Technology, AICT-339, pp.262-269, 2010, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-642-16239-8_35〉
Liste complète des métadonnées

Littérature citée [10 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01060676
Contributeur : Hal Ifip <>
Soumis le : vendredi 17 novembre 2017 - 14:44:04
Dernière modification le : lundi 18 décembre 2017 - 01:11:01
Document(s) archivé(s) le : dimanche 18 février 2018 - 15:16:04

Fichier

VoulgarisS10.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Zacharias Voulgaris, Chris Sconyers. A Novel Feature Selection Method for Fault Diagnosis. Harris Papadopoulos; Andreas S. Andreou; Max Bramer. 6th IFIP WG 12.5 International Conference on Artificial Intelligence Applications and Innovations (AIAI), Oct 2010, Larnaca, Cyprus. Springer, IFIP Advances in Information and Communication Technology, AICT-339, pp.262-269, 2010, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-642-16239-8_35〉. 〈hal-01060676〉

Partager

Métriques

Consultations de la notice

296

Téléchargements de fichiers

4