On the Problem of Attribute Selection for Software Cost Estimation: Input Backward Elimination Using Artificial Neural Networks

Abstract : Many parameters affect the cost evolution of software projects. In the area of software cost estimation and project management the main challenge is to understand and quantify the effect of these parameters, or 'cost drivers', on the effort expended to develop software systems. This paper aims at investigating the effect of cost attributes on software development effort using empirical databases of completed projects and building Artificial Neural Network (ANN) models to predict effort. Prediction performance of various ANN models with different combinations of inputs is assessed in an attempt to reduce the models' input dimensions. The latter is performed by using one of the most popular saliency measures of network weights, namely Garson's Algorithm. The proposed methodology provides an insight on the interpretation of ANN which may be used for capturing nonlinear interactions between variables in complex software engineering environments.
Type de document :
Communication dans un congrès
Harris Papadopoulos; Andreas S. Andreou; Max Bramer. 6th IFIP WG 12.5 International Conference on Artificial Intelligence Applications and Innovations (AIAI), Oct 2010, Larnaca, Cyprus. Springer, IFIP Advances in Information and Communication Technology, AICT-339, pp.287-294, 2010, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-642-16239-8_38〉
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01060679
Contributeur : Hal Ifip <>
Soumis le : vendredi 17 novembre 2017 - 14:39:02
Dernière modification le : lundi 18 décembre 2017 - 01:11:02
Document(s) archivé(s) le : dimanche 18 février 2018 - 15:04:57

Fichier

PapatheocharousA10.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Efi Papatheocharous, Andreas S. Andreou. On the Problem of Attribute Selection for Software Cost Estimation: Input Backward Elimination Using Artificial Neural Networks. Harris Papadopoulos; Andreas S. Andreou; Max Bramer. 6th IFIP WG 12.5 International Conference on Artificial Intelligence Applications and Innovations (AIAI), Oct 2010, Larnaca, Cyprus. Springer, IFIP Advances in Information and Communication Technology, AICT-339, pp.287-294, 2010, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-642-16239-8_38〉. 〈hal-01060679〉

Partager

Métriques

Consultations de la notice

45

Téléchargements de fichiers

4