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Figure 1: True2Form takes as input a 2D vector sketch, here traced on a design drawing (a). We formulate a set of local 3D regularity
properties that our algorithm detects and applies selectively to lift the curves off the page into 3D (b). A baseline inaccurate 3D result (c,
top), is gradually corrected by the selective regularization process (c, bottom). The accompanying histograms show how angles between
all potentially parallel and locally symmetric curves are randomly spread initially but converge to a globally consistent state where these
properties are either ignored or precisely enforced. For example, the curve tangents on the tapered fuselage are not treated as parallel in
global context, despite being near-parallel in 2D (b, green cross). Our 3D curve network can be easily surfaced to bring the sketch to life or
integrate the airplane design with its drive-train (d). Airplane sketch by Spencer Nugent.
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True2Form is a sketch-based modeling system that reconstructs 3D 1
curves from typical design sketches. Our approach to infer 3D form
from 2D drawings is a novel mathematical framework of insights
derived from perception and design literature. We note that de-
signers favor viewpoints that maximally reveal 3D shape informa-
tion, and strategically sketch descriptive curves that convey intrin-
sic shape properties, such as curvature, symmetry, or parallelism.
Studies indicate that viewers apply these properties selectively to
envision a globally consistent 3D shape. We mimic this selective
regularization algorithmically, by progressively detecting and en-
forcing applicable properties, accounting for their global impact on
an evolving 3D curve network. Balancing regularity enforcement
against sketch fidelity at each step allows us to correct for inac-
curacy inherent in free-hand sketching. We perceptually validate
our approach by showing agreement between our algorithm and
viewers in selecting applicable regularities. We further evaluate our
solution by: reconstructing a range of 3D models from diversely
sourced sketches; comparisons to prior art; and visual comparison
to both ground-truth and 3D reconstructions by designers.

Introduction

Product design, from the inception of an idea to its realization as
a 3D concept, is extensively guided by free-hand sketches [Pipes
2007; Eissen and Steur 2011]. Sketches form an appropriate pro-
jective surface for our mental vision, allowing designers to quickly
explore the essence of a 3D shape. Sketches also form an effec-
tive tool for visual communication, leveraging the human ability to
imagine a 3D shape from a compact set of descriptive, semantically
diverse, though often inexact, 2D curves. We combine design and
perceptual principles to propose True2Form, a sketch-based model-
ing tool that infers 3D shapes from a single design sketch. We fo-
cus on reconstructing free-form, piecewise-smooth models of man-
made objects. In this domain, we exploit the tendency of designers
to strategically sketch curves that are descriptive of the geometry.
These curves trigger our perception of geometric regularities that
aid the inference of depth in line drawings. The phrase “true to
form” meaning “exactly as expected”, signifies our attempt to re-
produce the 3D “form” viewers expect from a 2D sketch.

CR Categories: 13.5 [Computer Graphics|: Computational Ge- Techniques supporting digital design exist in a continuum between
ometry and Object Modeling—Geometric algorithms, languages, traditional 2D sketching and 3D CAD modeling. 3D sketch-based
and systems; multi-view workflows like Fibermesh [Nealen et al. 2007] and

ILoveSketch [Bae et al. 2008] combine 2D drawing and 3D navi-
Keywords: sketch-based modeling, descriptive lines, regularity gation to interactively bridge sketching and CAD modeling. We, in

contrast, leverage the descriptive power of 2D design sketches [Eis-
sen and Steur 2011; Pipes 2007] to directly estimate 3D shape. De-
signers using True2Form simply draw in 2D or trace over existing
sketches (Figure 1 (a)) and disambiguate accidental occlusion from
curves that intersect in 3D, as they commonly do in real drawings.
Our system is then able to infer a network of general 3D curves,
without requiring the 3D shape or its scaffold to be dominated by
straight lines [Lipson and Shpitalni 1996; Schmidt et al. 2009b].
Despite its single-view focus, True2Form can incorporate and ben-
efit from occasional view changes while drawing (Figure 13).

We base our approach on the premise that the drawing principles
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guiding designers in their choice of descriptive curves are the same
principles that aid viewers in lifting the sketch off paper into a
3D shape. We draw inspiration from design, vision and percep-
tion literature in our formulation of two principles, sketch fidelity
and shape regularity. Fidelity expresses a two-way relationship be-
tween the sketch and the shape it represents - the sketch should be
a faithful projection of the 3D shape and the 3D geometry should
be maximally captured by the sketch with only minor shape vari-
ation between the 2D curves and their 3D counterparts (Figure 2).
Fidelity itself is perfectly satisfied by a flat 3D shape coincident
with the sketch, regardless of how geometrically irregular the shape
might seem. Designers encourage 3D, out of plane shape inter-
pretations by drawing curves that emphasize shape regularity and
intrinsic properties like curvature and symmetry. For example, we
observe that smoothly crossing curves are universally perceived as
orthogonal in 3D and that proximal curves intersecting a common
curve often convey parallelism in 3D (Figure 1 (b)). The percep-
tual motivation for these two principles comes from viewer pref-
erence for regular shapes [Pizlo and Stevenson 1999] seen from
non-accidental viewpoints [Nakayama and Shimojo 1992].

Enforcing regularity cues lifts the relevant portions of the curve net-
work into 3D, off the paper. Our algorithmic challenge is for each
sketch to detect the same set of globally-compatible regularity cues
that humans would employ in their interpretation of a consistent
3D shape. Enforcing a set of cues that is either too restrictive or too
lax, leads to distorted results (Figures 4, 5). Our framework builds
upon observations specific to design sketches, to detect applicable
regularity cues consistent with those perceived by viewers. We first
generate an initial 3D reconstruction by enforcing orthogonality of
smoothly crossing curves while satisfying sketch fidelity. We next
note that the degree to which a regularity cue is satisfied in this re-
construction is strongly indicative of its applicability. Thresholding
all plausible regularity cues at once however, results in inconsis-
tent reconstructions as it ignores interconnections over the global
network of curves (Figure 5). Instead, we cast regularity detec-
tion as a rounding problem, that progressively drives the continuous
applicability likelihoods of individual cues defined over the [0, 1]
range to binary values. We express regularities as soft constraints
weighted by their likelihood and progressively round likelihoods
within an € of 1 or 0, determining the regularities to be applicable
or not. Each rounding yields a new 3D curve network that opti-
mizes fidelity subject to hard applicable regularity constraints and
soft likelihood-weighted unresolved ones, updating the likelihoods
of the unresolved cues. The process is repeated until all regularity
cues are resolved. Our detection and strict enforcement of regu-
larities consistent with human perception, is key to correcting the
inevitable inaccuracy in sketches [Schmidt et al. 2009a].

Our core technical contribution is thus both a formulation of the
geometric properties of descriptive sketch curves, detailed in Sec-
tion 3, and a framework to reconstruct 3D models from sketches by
optimizing fidelity subject to automatically detected applicable reg-
ularity cues, described in Section 4. We validate this contribution in
Section 6 by comparing the regularities selected by our algorithm
with the ones perceived by human observers. Our algorithm largely
makes the same choices as humans on a test set with 50 questions.

We also evaluate our algorithmic implementation (Section 5) in a
variety of ways (Section 7): we present a large compelling set of
complex 3D models created from diverse design sketches; we show
our reconstructed 3D curve networks to be plausible by conducting
a qualitative comparison to artist-estimated models combined with
visual validation by designers; we analyze the impact of varying
both curve input and solution strategies on the output 3D curves;
and lastly compare our results to prior art.

2 Related Work

Sketch-based modeling has matured over the past two decades; we
refer readers to [Olsen et al. 2009] for a survey of existing meth-
ods. Sketching interfaces can be roughly described as based on
a single-view or a multi-view metaphor. Using multi-view tools,
artists sketch strokes from different viewpoints onto existing 3D ge-
ometry [Igarashi et al. 1999; Nealen et al. 2007; Kara and Shimada
2007; Orbay and Kara 2012] or use strokes to define transient con-
struction surfaces on which 3D curves are drawn [Bae et al. 2008].
Such tools combine the fluidity of sketching with a typical 3D CAD
workflow based on frequent view changes. In contrast, we adopt a
single-view approach that minimizes view changes to mimic tradi-
tional pen-on-paper sketching and allow 3D recovery from existing
drawings. Figure 19 demonstrates our method’s ability to recon-
struct 3D models similar to those sketched with ILoveSketch [Bae
et al. 2008] from their 2D projection alone, while Figure 13 shows
how our algorithm also generalizes to multi-view interaction.

Recent single-view approaches rely on user indications or construc-
tion lines to model smooth objects. Schmidt et al. [2009b] require
users to specify polyhedral scaffolds as a support for 3D recovery
from input sketches. Figure 18 demonstrates that our algorithm is
capable of reconstructing similar 3D models without the need for
3D scaffolds. Olsen et al. [2011] and Sykora et al. [2014] combine
user indications and shape inflation to model smooth shapes from
existing drawings and photographs, while Gindgold et al. [2009] let
users position parameterized primitives on an existing sketch, using
various annotations to enforce alignment, equal length and symme-
try. Shtof et. al [2013] and Chen et al [2013] combine user indica-
tions and optimization to snap parameterized primitives to contours
in an image. Instead, our approach builds directly upon the de-
scriptive power of artist-drawn curves to recover piecewise-smooth
design curve networks with minimal annotation.

Past sketch based modeling methods [Andre and Saito 2011; Shao
et al. 2012] have used a subset of descriptive curves called cross-
sections. Cross-sections are planar curves, assumed to have orthog-
onal planes and tangents at intersections. The space of shapes de-
scribed strictly by these curves is somewhat narrow (Figure 20, first
row). This space is further narrowed by [Andre and Saito 2011],
who make additional regularity assumptions on the curve networks.
Shao et al. [2012] infer cross-sections as a step towards estimating
a 3D normal field, rather than a 3D curve network. Consequently
their 3D cross-section networks are often disconnected (Figure 20,
third row) and instead of correcting for drawing inaccuracies they
absorb them into an approximate but smooth normal field (Figure
20, second row). Both artifacts are inappropriate in the context of
3D shape reconstruction.

Automatic line-drawing interpretation aims to reconstruct shapes
from silhouette and other feature-lines in a single image [Cooper
2008], a challenging and often ill-posed task [Malik 1987]. In-
spired by research in computer vision, e.g. [Lowe 1987], Lipson
and Shpitalni [1996] and subsequent work [Lee et al. 2008; Lau
et al. 2010; Tian et al. 2009] estimate 3D models from engineering
drawings dominated by straight lines and orthogonal corners, by
detecting and enforcing regularity constraints such as straight-line
parallelism and corner orthogonality. Wang et al. [2009] combine
these cues with face orthogonality and curve parallelism, extending
the set of reconstructed models. While we draw inspiration from
this body of work, our algorithm is aimed at a more ambitious set
of input sketches, in particular piecewise-smooth curve networks
that dominate modern product design. These curve networks have
a much greater degree of freedom and few if any of the regularities
listed above, and thus cannot be handled by existing methods.

Properties of artist-drawn descriptive curves have also been used to
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Figure 2: The input sketch (a) is a precise projection of all three
shapes (b..d), that also show the sketch plane faintly from a near
horizontal view. We lift the sketch to a near circular 3D reconstruc-
tion in (b), with small and uniform foreshortening. The shape in (c)
is similar to (b) barring two non-planar bumps, missing in the ac-
cidental view of the sketch. The elliptical shape in (d) has uniform
but unexpectedly large foreshortening.

design algorithms for cycle detection [Zhuang et al. 2013] and sur-
facing [Bessmeltsev et al. 2012] of 3D curve networks. Our method
complements these algorithms by performing the necessary, earlier
step of converting a 2D sketch into a 3D curve network.

3 Understanding Sketched Curve Networks

We combine observations from the design and perceptual literature
to formulate properties of design sketches that explain their effec-
tiveness in conveying complex, smooth 3D shapes. Existing model-
ing research has validated subsets of our properties in different con-
texts such as engineering drawings dominated by straight orthogo-
nal lines [Lipson and Shpitalni 1996; Tian et al. 2009] and drawings
composed of orthogonal planar cross-section curves [Shao et al.
2012]. We complement these findings to propose a more compre-
hensive set of properties representative of general design sketches
of piecewise-smooth shapes. Our observations point to two con-
tributing factors guiding sketch interpretation: sketch fidelity and
regularity of the 3D interpretation of a sketch.

3.1 Sketch Fidelity

Projection accuracy. While designers often draw with approx-
imate perspective [Schmidt et al. 2009a], they aim at producing a
faithful projection of the imagined 3D shape. This observation im-
plies that the projection of our 3D reconstructions to the view-plane
should align as much as possible to the input curves while granting
leeway to correct for inaccuracy inherent to free-hand sketching.

Minimal variation. Design books recommend using viewpoints
that “optimize shape information” and instruct designers to mini-
mize foreshortening over most faces of the object [Eissen and Steur
2011]. This recommendation is consistent with the perceptual no-
tion of general or non-accidental viewpoints [Nakayama and Shi-
mojo 1992; Mather 2008], which suggests that observers interpret
2D geometric properties as strongly correlated with 3D geometry
rather than being caused by a particular choice of viewpoint.

Prior work builds on this principle by predicting that straight lines
in 2D correspond to straight lines in 3D [Lowe 1987; Lipson and
Shpitalni 1996; Tian et al. 2009]. While we adopt a similar ob-
servation for straight lines, it is not sufficient to relate the 2D and
3D geometry of curved lines in sketches of smooth shapes. We
introduce a more general principle of minimal 2D-to-3D variation
that states that the shape of the 2D curves should closely reflect
their shape in 3D, up to small and evenly distributed foreshorten-
ing (Figure 2). In other words, we expect the 2D and 3D curves
to be locally affine invariant. Affine invariance, together with pro-
jection accuracy suggests a designer preference for locally planar
curves, an observation supported by perceptual studies that report

Figure 3: Descriptive curves convey 3D shape in design sketches,
with occluded curves often drawn faintly. See insets in the text
for highlighted properties. Pencil sharpener by Spencer Nugent®,
toothpaste by Koos Eissen and Roselien Steur®.

better viewer understanding of shapes represented using planar con-
tours [Pizlo and Stevenson 1999].

Ambiguity. Because sketches form 2D projections of 3D shapes
they exhibit two inherent types of ambiguities. First, in the presence
of hidden lines the curve geometry alone does not provide enough
information to distinguish occlusions from intersections. Artists
employ different conventions to convey occlusions, such as draw-
ing hidden parts with faint or dashed lines (Figure 3). Our user
interface supports similar disambiguation (Section 5.1). Second,
sketches suffer from an inherent convex/concave ambiguity allow-
ing for alternative global interpretations. We adopt the approach of
Shao et al. [2012] to resolve the ambiguity by favoring more convex
shapes viewed from above. We also allow users to select a different
interpretation, if the solution is not what they envisioned.

3.2 Shape Regularity

Fidelity, taken in isolation, is best satisfied by the least foreshort-
ened interpretation: the 2D curve network itself. Perceptual studies
and modeling research suggest that viewers imbue line-drawings
with depth variation by imposing regularity constraints on the pos-
sible solutions [Lipson and Shpitalni 1996; Pizlo and Stevenson
1999], consistent with the minimum principle or Law of Prdgnanz
from Gestalt theory [Koffka 1955]. These constraints however, are
inherently context-based and are, we believe, only applied when
consistent with each other and with sketch fidelity.

Orthogonality. Perceptual studies indicate that observers inter-
pret intersecting smooth curves, or smooth-crossings, as aligned
with the lines of curvature of an imaginary surface [Stevens 1981;
Mamassian and Landy 1998], and thus having orthogonal tangents
at these intersections. Designers leverage this perceptual bias to
depict smooth shapes effectively using cross-sections [Shao et al.
2012] and other curves [Bordegoni and Rizzi 2011; Bessmeltsev
et al. 2012] aligned with lines of curvature.

| Our observations, confirmed by the study in Sec-
+ tion 6, indicate that smooth-crossings are always
perceived as orthogonal by viewers and we specu-
late that such intersections are specifically drawn to
convey orthogonality (inset, light cyan). In contrast
other intersections like sharp corners or U-turns, can
indicate geometric features such as sharp edges or
silhouettes, where the intersecting curves are not
necessarily orthogonal. Still, these intersections also
tend to be interpreted as orthogonality cues, when
context allows for it (inset, dark cyan and purple), as studied by
Perkins [1971] for triplets of lines depicting cubic corners.




Parallelism. The preference for regular shapes as well as the ex-
pectation of minimal 2D to 3D variation suggest that curve paral-
lelism observed in 2D extends to 3D. Parallelism of straight lines
have been successfully used in 3D reconstruction from both im-
ages [Lowe 1987] and engineering drawings [Lipson and Shpitalni
1996; Tian et al. 2009]. Unfortunately design sketches contain few
straight lines and rarely contain complete parallel curves.

Following an extensive review of de-
sign sketches we deduce a local paral-

N | lelism cue applicable to sketches com-

‘ 1 posed of curved lines. We observe that
' 2 artists tend to strategically place in-
S tersecting curves along a given curve

such that the tangents at adjacent inter-

sections are frequently parallel (inset,
light green). Our study indicates that viewers tend to interpret such
adjacent 2D tangents as parallel in 3D, when context allows for it.

Symmetry. Designers also position curves to emphasize intrin-
sic shape properties like local symmetries (inset, red) [Eissen and
Steur 2011], consistent with viewer tendency to interpret intersect-
ing curves as geodesics over smooth surfaces [Knill 1992].

Shao et al. [2012] account for this
property by encouraging cross-section

1 curves to align with geodesics at all
intersections. Most shapes however,
cannot be fully described by geodesics
alone and sketches often contain other
curves (inset, orange).

Curve planarity. Pizlo and Stevenson [1999] have shown the im-
portance of planar contours on our ability to recognize the same
shape under different viewpoints.

Designers exploit this perceptual

: effect by drawing globally planar

N = cross-section curves over smooth

surfaces [Eissen and Steur 2011;

Shao et al. 2012]. Aurtistic preference

for planar curves also relates to

our minimal variation principle since

planar curves are affine invariant under

near-orthographic projections. Many 3D objects however, cannot

be represented only with planar curves, requiring non-planar

descriptive lines to effectively communicate their shape (inset,
dark blue).

Planar curves when present facilitate more global regularities, such
as curve parallelism and orthogonality. A design tutorial comments
“usually the sections are perpendicular” [Eissen and Steur 2011]
and our observation of design sketches confirms frequent use of
curves lying in orthogonal or parallel planes. Similar grouping
strategies have been observed in plane-based 3D shape abstrac-
tion [McCrae et al. 2011].

Applicability. The regularity cues discussed have two common
properties. First, with the exception of smooth-crossing orthog-
onality, they all are context-based and may or may not apply in
any particular instance. Second, as is the nature with regularizers,
they are strict — a curve is either a geodesic or not, two intersect-
ing curves are either orthogonal or not. In other words, artists and
viewers do not make an effort to optimize toward regularity (Figure
4 (b)), they either locally expect full regularity or none. We use
these observations to detect applicable regularizers and reconstruct
3D curve networks from artist sketches.

L

(a) Input sketch

(b) All soft constraints (c) Ours

Figure 4: Treating all possible regularity cues as soft constraints
generates an unnatural 3D output (b). Detection and strict enforce-
ment of only the applicable cues produces a plausible 3D shape (c).

Input 5° 10° 15° 20° Ours Ground truth
Figure 5: Simple thresholding of the regularizers by the listed hard
angle threshold to determine applicability does not account for in-
terconnectedness between the chosen regularities, resulting in awk-
wardly shaped 3D reconstructions. Our method (right) correctly
detects the applicable set of regularities, leading to a near perfect
reconstruction of the sketched ground truth model.

4 Reconstruction Framework

Given a set of applicable regularities, we can formulate 3D recon-
struction as a constrained optimization problem, optimizing fidelity
subject to regularity constraints (Section 5). However, to obtain the
desired reconstruction we must first determine which regularities
are applicable before applying them strictly and selectively. An in-
correct set of regularity cues, either too large or too lax (Figures 5
and 6 (a..d)) leads to imperfect reconstruction.

To start the process we recall that orthogonality at smooth cross-
ings is one regularity that always applies. Optimizing fidelity sub-
ject to smooth-crossing orthogonality lifts the curve network into
a baseline reconstruction that we use to bootstrap our search for
additional applicable regularities. Specifically, we observe that the
degree to which each regularity is satisfied in this baseline solution
provides a local predictor, or likelihood, of its applicability. Un-
fortunately, directly enforcing all regularities that fall within some
likelihood threshold can have significant undesirable global effects
as it ignores interconnections within the network. Figure 5 shows
the distorted reconstructions produced by such a naive thresholding
approach.

Instead, we propose a method for determining applicability inspired
by recent integerization and classification methods developed for
mesh processing tasks [Bommes et al. 2009; Sharf et al. 2008; Li
et al. 2011] as well as regularization strategies used in line drawing
beautification [?]. The common denominator of these techniques is
the initial use of continuous variables as approximation of the tar-
get discrete ones, followed by a progressive rounding process that
pushes these values toward their discrete counterparts. We propose
a similar approach tailored to the specifics of our setup. Instead of
directly classifying regularities as applicable or not, we associate
each with a likelihood score in the [0, 1] range based on the de-
gree to which it is satisfied. A likelihood score of one indicates an
applicable regularity, and a score of zero indicates an inapplicable
one. We then add these regularities into the optimized energy func-
tional as soft optimization terms weighed proportionally to their
likelihood. We optimize the augmented functional subject to previ-
ously detected applicable regularities and re-compute the likelihood
scores on the evolving 3D curve network. When a likelihood score
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Figure 6: Stages of solving the card reader model. Each step has an overlay with the previous step and indicates the newly found regularizers.
Histograms show the distribution of angles of each regularizer at each step of the process.

gets close to one, we classify the corresponding regularity as appli-
cable, and when it falls below e we classify it as inapplicable. We
repeat the optimization process until all regularities are classified,
or until likelihood scores no longer change between iterations. In
the latter case we use the conservative solution of classifying the
remaining regularities as inapplicable.

‘We note that it is beneficial to process the set of potential regularity
cues one class of cues at a time, rather than all at once. Some cues
like tangent parallelism are easier to predict from the 2D sketch
and can be processed first. Other regularity types are correlated
and resolving one class of cues can help detect the applicability of
another: local symmetry is only meaningful at orthogonal intersec-
tions; and curve level cues become more evident after local cues
are resolved. Since enforcing curve-level regularities requires per-
curve plane fitting it can introduce bias if done sequentially. To
avoid biasing planarity and inter-plane relationships should be de-
tected and enforced all at once. We thus resolve regularities in a
logical class order of parallelism, orthogonality, and symmetry, fol-
lowed by curve level and inter-curve regularities. Processing in or-
der inflicts small changes to the output at every stage, further adding
numerical stability and efficiency. Overall, we thus process each
class of regularity cues in sequence, and progressively resolve all
possible cues in that class as applicable or not, before moving to
the next class.

5 Implementation

We first describe our sketching interface followed by our numerical
formulation of the curve properties from Section 3, and details of
the regularity detection algorithm proposed in Section 4.

5.1 User Interface

Our algorithm is integrated with a vector-based single-view sketch-
ing system that provides basic curve drawing and editing func-
tionality (see accompanying video) and can import/export sketches
from popular vector graphics software like Adobe Illustrator, Au-
todesk SketchBook Designer and Maya. We support the use of lay-
ers to represent independent parts of an object (see the mixer sketch
in Figure 16 where different layers are assigned different shades of
gray). We stack the reconstructions of independent parts from back
to front to generate a complete 3D model, using a z-buffer like al-
gorithm to prevent interpenetration.

G
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(a) Input (b) 3D Output

(c) Mirrored Left / Right

(d) Half Input  (e) 3D Output

Figure 7: Even well drawn sketches (a) are unable to perfectly cap-
ture global symmetry, resulting in asymmetric reconstruction (b).
Instead of symmetrizing the output, such as by mirroring one or the
other half (c), we let artists optionally draw half the shape and in-
dicate global symmetry in the drawing (d, red curve), from which
we are able to reconstruct a perfectly symmetric 3D output (e).

Annotations. To distinguish 2D curve crossings which corre-
spond to 3D intersections from those caused by occlusions, we re-
quest users to annotate the latter. In our figures we represent valid
curve intersections with small dots. Users can also optionally flip
between the convex and concave interpretation at any intersection
if the default setting does not correspond to the intended shape.

Modeling globally symmetric shapes, common in product design,
can be eased by allowing users to draw half the shape and annotate
its global symmetry curve (Figure 7). This option significantly re-
duces user effort in both drawing and occlusion annotation of the
input. We handle global symmetry by enforcing planarity, orthog-
onality, and symmetry along the marked curve, and mirror the final
3D reconstruction. Providing these annotations took less than five
minutes for the most complex results in this paper (Figure 21).

5.2 Numerical Formulation of Curve Properties

We design our curve representation and the property formulations
to be as simple as possible to optimize numerically, while ade-
quately capturing the complexity of design sketches. We represent
both input and output curves by piecewise cubic (4-point) Bézier
splines. We place Bézier segment end-points at network intersec-
tions and introduce segments as necessary between intersections
to accurately capture the sketched 2D geometry (Figure 8). The
Bezier representation is transparent to users, who draw strokes via
Ilustrator, Maya, or our internal polyline-based UI. We fit Bezier
curves to strokes adaptively using iterative least-squares. Complex
curve sections can and do consist of multiple segments (Figure 8
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Figure 8: Cubic Bézier network representing an input sketch (a).
Notations: Bézier segments (light blue), control points (dark blue)
and polygons (dashed lines) (b,c).

(top curve), wing of the fighter in Figure 18). The use of an internal
Bezier representation is motivated by the observations of [Bae et al.
2008] that designers draw smooth inflection-free strokes well cap-
tured by cubic Bezier segments. Our “minimal variation” principle
suggests that the complexity of the 2D curves is reflective of their
3D form. Representing curves with Bezier segments simplifies our
numerical formulation without compromising the expressiveness of
our 3D networks.

Following the minimal variation principle which suggests that the
complexity of a 2D curve reflects its 3D complexity, we expect the
number and distribution of control points sufficient to represent the
curve shape in 2D to be sufficient to reconstruct its 3D counterpart.
Using one to one 2D to 3D control point correspondence simplifies
the formulation and reduces the number of variables.

We denote the i'" Bézier segment as B, its 3D control points as
Bj..3 and their original locations in the 2D sketch as Bj_ 3. We use
a coordinate system where x and y are the horizontal and vertical
axes of the i 1mage plane, and z is the depth axis. For each pair of
consecutive G* continuous segments B" and B", we constrain the
control points Bi, Bl = BO, B! to be collmear, maintaining Gt
continuity (Figure 8), as dictated by the minimal variation principle.
Straight line Bézier segments are similarly constrained.

Sketch Fidelity We encode fidelity to the sketch by relating the
2D and 3D Bézier control polygons, instead of the curves them-
selves. This approach drastically simplifies the formulation with no
discernible negative impact on the results.

Projection Accuracy. We account for projection accuracy us-
ing two terms, one accounting for absolute positions of the control
points and one accounting for the slope of control polygon edges

Buceuracy = 3_ || Bi(a,y) — B>+ (D
i,k

|(Bisr-(z,y) — Bi(2,9)) — (Bir — BL) ||

> wa(d)
i,k

Our control point spacing reflects both intersection frequency and
local shape variation and is thus intentionally uneven. To account
for uneven length of polygon edges we weight the individual slope
terms, to allow for greater deviation as the spacing increases using:

wa(d) = e %" 1. @)

Here, d = ||Bjiy1 — Bi||. o is set using the standard three sigma
rule to 1/3 of the sketch bounding box diagonal, and ¢ = 0.01.
Our formulation implicitly assumes orthographic projection, since
Schmidt et al. [2009a] and our experiments indicate that the per-
spective in free-hand sketches is too inexact to meaningfully invert.

i—Rh h
Minimal variation. To en- B B,=B, B, « B/
code the expectation that VA N
2D and 3D curves are affine B)'g % A
invariant, we leverage affine 0 3
combinations of adjacent 2D B/s
control points. For affine invari-
ant curves, subject to orthographic projection, such combinations
are expected to be invariant. In this formulation we separately
account for quadruplets of adjacent control points in general
position (i.e. where no three points are collinear) and triplets of
adjacent collinear control points. In the general case, illustrated in
the inset, we consider both the four control points defining each
Bezier segment B° (green quadruplet, with points B¢, Bi, B3, B3)
and adjacent control points across consecutlve segments B* and
B" (blue quadruplet, with points B!, Bi, B , B). For all such
quadruplets we denote the four control point positions as Qo . . . Q3
and compute the affine weights qo, q1, g2 that satisfy

Qs =q@Qo+ Q1 + ©2Q2, st.go+ @ +2=1. (3

over the input 2D curves. Note that the weights can often be nega-
tive. For affine invariant curves under orthographic projection this
relationship will hold for the z coordinate as well. When three
control points considered are near collinear in 2D the computation
of affine weights in Equation 3 will either fail or produce one or
more zero weights. Instead, we encode minimal variation for any
triplet Ty, 71, T% of collinear control points using linear interpola-
tion, which similarly holds under orthographic projection. We thus
compute ¢ in 2D to satisfy

Ty =toTo + (1 —to) T “

Minimal variation is then expressed as
=2 uld
+ Z wa(d

where the sums go over all the quadruplets and triplets of interest
The weights wq(d) are computed using Equation 2 with d as the
length of the longest line between the participating points.

) 120Qo + ¢1Q1 + ¢2Q2 — Qs)°

Uamatzon

||toT() + (1 — to)TQ T1H2 s (5)

Foreshortening. We encode minimal foreshortening as

Eforeshortening = de(d) (B;i+1.z - B;lcz)Z (6)

ik

where the sum goes over all successive control points of all curves
andd = || By, — Bi|-

The fidelity energy we optimize combines these three terms

Efidelity = waEaccuT‘acy + wy Evariation + w.fEfO'reshortening

O]
using projection accuracy weight of w, = 1, half as important as
shape variation w, = 2, and a weak foreshortening weight wy =
0.001. When minimizing this energy we constrain one control point
to have z = 0, since the energy is invariant under z translation.

Shape Regularity We complement fidelity energy with regular-
ity constraints to bring depth to the sketch. While these regular-
ity cues are inherently angular, expressing angles as trigonometric
functions of control points, is numerically problematic. We thus re-
cast them as linear or quadratic functions of control point positions.



Tangent orthogonality. The tangents at the end points B or B}
of a Bézier curve are simply the vectors to adjacent control points
Bi or Bj respectively. Given two Bézier segments B°, B’ that
intersect at a shared control point By = B}, tangent orthogonality
at the intersection is expressed as

Corthogonal = (Bi - Bé) . (B{ — B(J)) =0.

i
Parallelism. Given two adjacent in- Bi %
tersections along a curve (see inset), 0¢ < B/
we consider the two adjacent segments Bj - l
B* and B’ forming these intersections L4

and express parallelism as similarity
between their tangent directions, normalized using 2D lengths.

Chparaliet = (Bi—B(i))/ HBi - Bé

~(Bi-BY)/ Bl - B

Local symmetry. If a curve defines a local symmetry plane, then
any curve orthogonal to this curve, is symmetric around this plane,
and consequently orthogonal to the plane (as well as the curve).
Recall that a vector is orthogonal to a plane, if it is orthogonal to
two independent vectors in it. Since we only evaluate symmetry
of B* at the intersection with B’ if 7 is a priori orthogonal to B

we only need to consider one more B/ B e B
vector not collinear with the tangentto ~ ® =~ > s
B* at the intersection. We use the con- s
struction shown in the inset to obtain P

such an in-plane vector which deviates B i/ _-~ “(B/+B))/2

. . -3
far from the tangent, resulting in ¢

B+ B’y

5~ B (BI-B)=0. ®

Csymmetry = (
We do not evaluate symmetry when the considered curve forms a
straight line, and hence does not define a unique plane, at the rele-

Bit+ BY :
S =3 _ By =0.

vant intersection, i.e. when 5

Curve-level regularity. To evaluate curve planarity as well as in-
teraction between curve planes we introduce a per curve normal
variable n. We express planarity as

Cplanar' - g

(&:k)#(5,0)

((Bi — B})-n)* =0. ©)

The sum includes all pairs of control points on a given curve. The
formulation implicitly grants more weight to pairs of farther apart
points, capturing scenarios such as the spiral (Figure 12) where
curves are planar locally but not globally. We express parallelism
using the same formula, this time applied to the set of curves we
wish to make parallel, using a shared normal variable. Orthog-
onality between curve planes is expressed as the the dot product
between their normals. To evaluate curve linearity, or straightness,
we measure how well the interior control points can be described as
a linear combination of the end points Ciinear = >_; o (Bt +
By (1 —tixr) — Bi)?, where t; 1, are computed by minimizing this
formula on the 2D curves.

5.3 Optimization Details

Out goal is to minimize the fidelity energy E'f;qerity Subject to all
applicable regularity constraints, i.e. those that can be enforced
with only minor increase in this energy.

=0.

Baseline reconstruction. Given a 2D sketch we obtain the
baseline reconstruction by minimizing fidelity subject to smooth-
crossing orthogonality constraints. Since minimal variation indi-
cates that tangent parallelism in 2D is a good predictor of paral-
lelism in 3D, we augment the initial optimization with soft paral-
lelism constraints weighted by the 2D angles between each pair of

adjacent curves. Specifically, w, = 0.1e=**/*” where o is the 2D
angle and o = 15°. At this stage, since few regularities are en-
forced, we aim to minimize 2D deviation from the sketch, and use
a higher accuracy weight w, = 10 in the optimization.

Since orthogonality constraints are quadratic, our constrained opti-
mization is non-convex and needs a good initial guess to converge
to the global minimum. A naive guess of setting x and y coordi-
nates of the control points to their positions in the sketch and set-
ting z = 0 everywhere, is not sufficient for this purpose. To lift the
guess out of the plane, we first lift one arbitrary smooth-crossing
into 3D, by solving our optimization problem on a sub-network of
four Bezier curves surrounding this crossing, using the view from
above preference or user indicated orientation to eliminate ambigu-
ity. We then propagate this solution across the sketch by optimizing
our energy functional while over-emphasizing tangent parallelism
using w, = 5. The resulting non-flat curve network provides the
desired initial guess for our baseline reconstruction.

Likelihood score. All the regularities we enforce can be encoded
in terms of angles. We thus use angle based functions to evaluate
the likelihood that a specific regularity cue is applicable, given an
intermediate 3D curve network. We empirically map angles within
a tight inner bound I, of 5° to a likelihood of 1 and those outside a
loose outer bound Oy, of 15° to 0. We also define a sharp likelihood
fall-off beyond I}, using a monomial likelihood function

L(a) = min(1, aa’). (10)

where « is the angle, and a and b are computed to produce the
values of 1 and 0.005 at the two respective bounds.

Progressive optimization. To recover the applicable regularity
constraints we iteratively minimize an augmented energy functional

Efidetity + we Z L(w)Ch,

where the sum goes over all currently considered regularity cues
weighted by their likelihood computed on the evolving 3D curve
network, subject to all previously detected applicable regularities.
We set the regularity weight to w. = 50, which combined with the
sharp fall-off in the likelihood function, ensures that shape regular-
ity does not come at the expense of a large decrease in fidelity. E.g.
when the angle deviation is 10° the weight product w.L(«) is only
2. After each solver iteration we classify regularities with a like-
lihood of 1 as applicable constraints, and those with likelihood 0
or those whose likelihood did not increase following the optimiza-
tion step as inapplicable. Classified regularity cues are removed
from the sum above (applicable cues are added to a set of hard con-
straints) and the solver iterates until all regularity cues in a class are
classified. Four iterations typically suffice for each class.

We use the order of resolution described in Section 4, first opti-
mizing tangent parallelism, the intersection orthogonality, followed
by local symmetry cues, only considered for curve intersections al-
ready detected as orthogonal.

Curve and network level constraints. We optimize for curve
planarity, linearity and inter-plane relations last, processing them
together, as sequential processing can, in our experience, bias the



solution. Solving together for both control point positions and plane
normals is numerically problematic as it requires either minimizing
or enforcing a quartic term (Equation 9). We break the process into
a local-global solve, first computing best-fitting normals, keeping
positions constant and then solving for positions while fixing the
normals. Thus, for each curve we first compute an individual best-
fit plane normal by minimizing Equation 9. We then compute a
weighted average of the angular deviations between this normal and
the vectors connecting all pairs of control points along the curve

o= Z /(Bj, — B} ,n)wn/ Z Wn

(k) #(5,1) (4,k)#£(4,1)

where w, = (90 — Z(Bj, — B}, n)). These angles are used to
determine the likelihood L(«) of each curve being planar. Linear-
ity is similarly measured as an angular deviation, this time using
angles between pairs of lines connecting control points Z(Bj, —
B/, By, — Byp). To evaluate inter-plane parallelism, we perform
single-linkage clustering of plane normals (greedily merging the
closest clusters as long as their joint angular deviation with respect
to a joint plane normal is within the outer bound Oy). The joint nor-
mal for a cluster is the minimizer of Equation 9 over all clustered
curves. To evaluate and enforce inter-plane orthogonality we pick
pairs of clusters whose plane normals are within Oy of orthogonal-
ity, and solve for plane normals jointly by minimizing Equation 9
for each cluster subject to normal orthogonality. We then use Equa-
tion 9 with these normals as orthogonality proxy during optimiza-
tion, and use the average deviation of the planes form the computed
normals as orthogonality likelihood.

We use the same iterative resolution process as before augmenting
the functional with all the curve-level terms at once each weighed
by its likelihood. After each iteration we recompute the per-plane
and per cluster normals. If a cluster is deemed non-planar, we gen-
erate smaller sub-clusters, by re-clustering its members as before,
stopping short of the final merge.

Our goal in detecting applicable regularities is to be conservative,
thus when uncertain we aim to delay ultimate decision making un-
til all context is considered. Specifically, since parallelism is deter-
mined first, the decision process lacks larger context and can some-
time generate false positives. To enable subsequent optimization to
relax false regularities, we use soft rather than hard tangent paral-
lelism constraints, with weight w.. This lazy approach to uncer-
tainty, allows some regularities to be detected indirectly by enforc-
ing others. Curve-level regularities, in particular, may enforce local
cues for which there was no definitive evidence a priori (see the
local symmetry histogram in Figure 6 (d, e)).

Solver. We use Lagrange multipliers to enforce constraints and
minimize the augmented functional using a Newton solver, with
bounded step size. Specifically, we bound mutiplier increments to
have norm less than one, by normalizing them by the biggest in-
crement size if it is above one. This normalization stabilizes con-
vergence, without significant impact on solver speed. The solver
converges within seconds on all the inputs we tested.

6 Perceptual and Design Validation

Given the perceptual complexity of our problem, we chose to val-
idate our hypotheses and design choices in two ways. First, while
some of our regularity cues have been anecdotally reported on in
Gestalt and vision literature, we performed a study to formally test
consistency between humans and our algorithm in perceiving these
cues in example sketches. Second, to evaluate the plausibility of
our 3D outputs, we asked designers to draw and model in 3D their

impression of a set of ortho-projected curve renders of 3D models
(ground-truth data) and compare their outputs with our algorithmic
results.

6.1 Sketch Regularity Perception

We aim to answer two questions: Q1: Do humans consistently per-
ceive 3D parallelism, orthogonality, symmetry, linearity and pla-
narity cues in 2D sketches? Q2: Does human perception, when
consistent, match our algorithmic output for the above cues?

Study Design: Our test data-set comprised 10 drawings, represen-
tative of the sketch inputs to our algorithm (Figure 9). The drawings
comprise a mix of 2 ground-truth sketches and 8 artist sketches,
capturing a range of sketch inaccuracy and curve complexity. We
included 5 half-drawings of symmetric objects, since our algorithm
is capable of using half a sketch to successfully reconstruct the 3D
shape. As regularity properties are Boolean, we formulated our
study as a set of 50 (Y/N) questions (5 per sketch). The number of
sketches and questions was chosen so the typical time to complete
the study was 10-15 mins. The questions asked users to imagine
the sketch as a 3D model and then answer queries relating to the 5
regularity cues, for example curvel imagined in 3D defines a plane
of local symmetry for curve3 (Y/N). Queried curves were unobtru-
sively numbered avoiding perceptual bias possible when using color
or visual markings. The number of questions pertaining to each of
the five cues were: parallelism 9, orthogonality 14, symmetry 5,
linearity 12, planarity 10,. The study (supplementary material) was
performed by 33 participants (19 electronically, 14 on print-outs),
24 of whom had some computer graphics background.

revolve vacuum iron hand-vac

o
28

wrinkle

fighter guitar camera

Figure 9: User study corpus comprising 10 sketches.

Study Results: We removed two incomplete forms and report the
results of 31 participants.

Q1: For a sample size of 31, agreement of 22 or more participants
(> 70%,p = 0.0294) is statistically significant (i.e. p > 0.05).
For the 50 questions the histogram of agreement between partici-
pants was [90 — 100% : 36,70 — 90% : 8,50 — 70% : 6], indicat-
ing statistically significant human consistency in perceiving 44/50
questions. 27 questions had 100% agreement. As expected, the
precision and simplicity of the sketch impacted consistency of per-
ception: the revolve, wrinkle, tube and mixer drawings had near
perfect agreement on all questions, whereas the iron, vacuum, and
hand-vac were the most inconsistent (Figure 10). Broken down by
regularity cue the number of significantly consistent answers was
(linearity 12/12, planarity 8/10, perpendicularity 13/14, symmetry
3/5, parallelism 8/9). These statistics clearly indicate a consistency
in human perception of geometric regularity in sketches.

Q2: Our algorithm agreed with the majority of participants on
46/50 questions. None of the 4 anomalous questions had significant
human consistency (see iron and hand-vac for anomalous examples
in Figure 10). We believe this is sufficient validation that our al-
gorithm is able to reliably predict geometric regularities within the
global context of a design sketch.
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Figure 10: Queries and results (Yoage human consistency and ma-
Jjority response) illustrated on 4 models. Questions where the algo-
rithm disagrees with the majority are further labeled X. Red lines
mark the curve participants were queried about as being a plane of
local symmetry for the intersecting curve.

6.2 Algorithm Evaluation

To evaluate our end goal of creating plausible 3D shape from 2D
sketches, we designed a set of 3D curve networks as ground truth
data (Figure 11, left column). These models capture the variety in
the curve geometry of real-world design sketches with curves rang-
ing from straight lines (spiral and wrinkle), circular arcs (revolve),
inflections (wrinkle and cross) and non-planar curves (spiral and
saddle). We then picked typical generic views for these models as
input sketches for our algorithm, which successfully constructed a
3D curve network for each input.

We validated our input sketches as ground truth data by testing that
they were meaningfully and consistently perceived by artists. We
did this by asking two artists to draw orthogonal views to the given
sketch as they imagined it using any construction lines or other
drawing aids. While one artist commented that drawing orthogo-
nal to a non-canonical viewpoint was somewhat cumbersome, both
produced meaningful sketches that qualitatively matched the input
3D data in orthogonal views (Figure 11, last two columns). We
also asked a trained modeler to recreate 3D models of the perceived
shapes from the input sketches, using them as a visual reference in
Autodesk Maya (middle column).

We note that qualitatively, ground truth, 3D modeler output, user
sketches and our algorithmic output, are visually similar in the
views orthogonal to the input sketch (Figure 11). Our results for
the spiral and revolve are near identical to ground truth and the
wrinkle, saddle and cross have marginally less foreshortening than
ground truth, which aligns with the human tendency to overcom-
pensate for foreshortening in drawings [Schmidt et al. 2009a]. Fi-
nally, we asked the 3D modeler to view the ground truth data and
our algorithmic result alongside his creations interactively in 3D
and comment on them. Summarily, he felt that all three sets of out-
put captured the essence of the shape intended by the input sketch
and would make worthy 3D mock-ups for conceptual design.

7 Results

We evaluated our method on a variety of sketches, ranging from
simple abstract shapes (Figure 12) to elaborate drawings of com-
plex design objects such as airplanes, cars or vacuum cleaners (Fig-
ures 1 and 21). We include both fully drawn models such as the
guitar and camera (Figure 16), and models where users exploit
symmetry to draw only half the shape (Figure 1). Several inputs
(gamepad, pencil-holder, tape-holder, video demo) were sketched
on blank canvas by Xch’e’ Hernandez Simper, an industrial de-
sign student. While he experienced a stiff learning curve to adopt
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Figure 11: The curves in the extreme left column (ground truth) are
shown to artists as the input sketch. The other columns show a view
orthogonal to the sketch to illustrate perceived depth. From left to
right we show ground truth curves, our algorithmic output (green),
artist modeled 3D surfaces and alternate view curves sketched by
two artists.

Figure 12: Alternate view visualization of our results.

the system - largely due to lack of UI features such as undo,
scale/translate/rotate, and other shortcuts, he was able to create a
range of models once these were overcome. Based on the experi-
ence he believes that following some Ul standardization the system
will be widely and successfully used by professionals. Many inputs
were traced over real-world freeform sketches by the authors from
design books and websites (mixer, camera, iron, airplane, race-
car, sewing machine, toothpaste, pencil-sharpener, vacuum clean-
ers) with minor edits. See pencil-sharpener and toothpaste in Fig-
ures 3, 14, 21 as well as Figure 16. These inputs are representative
of the irregularity and inaccuracy encountered in real sketches. One
input (guitar) was traced over a photograph, augmented by a few
descriptive curves. While the feature curves are accurate projec-
tions of 3D geometry with unknown perspective, the added curves
are imagined and approximate. Several inputs were traced over the
projection of ILoveSketch and 3DScaffolds curve networks (car,
fighter, coffee machine). These curves were designed by multiview
systems anterior to ours, and were not aimed to specifically follow
our conventions. Many of the sketches were traced with Illustrator
in a few minutes (toothpaste) to an hour (camera). The only inputs
free from sketch and projection inaccuracies are the 5 ground-truth
3D models in Figure 11.

We surfaced the reconstructed curve networks using the methods
of [Bessmeltsev et al. 2012; Zhuang et al. 2013], to aid 3D visual-
ization. All our outputs visually conform to user expectations. Our



(a) Original 2D Sketch (b) Rotated and (c) Additional curves (d) Output 3D Curves

projected to 2D curves  on rotated drawing

Figure 13: Multi-view modeling: an initial sketch (a) results in
a partial 3D model (b), which can be rotated to draw previously
occluded parts(c) , and recompute the final 3D model (d).
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3D Reconstruction

Figure 14: Sketch refinement/coarsening: The curves traced over
the pencil-sharpener sketch from Figure 3 lack sufficient connective
context to correctly reconstruct the complex non-planar curve. We
can fix this by adding an intersecting curve (a). An ILoveSketch
curve network can be dramatically simplified by removing curves,
while preserving the overall reconstructed shape (b).

algorithm provides rapid feedback, with reconstruction times rang-
ing from around 3 sec. for small models like the toothpaste to just
under 30 sec. for the most complex ones like the camera.

Most of our results were produced using a single-view interface,
mimicking a traditional pen-on-paper workflow. Users can thus
ideate by drawing directly within our system or simply trace over
napkin sketches or inspirational photographs (Figures 1, 16). Fig-
ure 13 shows our reconstruction algorithm used within a multi-view
interface, where users can first draw part of the model in one view,
rotate the reconstructed result and continue to draw additional de-
tails. Users can pick either drawing workflow to meet their needs.

Robustness to Input Edits. Figure 14 shows the impact of
adding and removing sketched curves on our 3D output. Adding a
single curve to the pencil sharpener constrains the non-planar curve
to better align with the rest of the network. Removing many input
curves from a car traced over a model from [Bae et al. 2008] re-
duces sketch clutter but retains the overall structure of the sketched
vehicle.

(a) Input sketch

(b) No plane parallelism (c) Ours

Figure 17: Enforcing plane orthogonality and parallelism effec-
tively undoes inexact perspective distortions in sketch input, restor-
ing the parallel horizontal planes on this sewing machine.

(a) 3D scaffolds model (b) Traced-over curves (b) Our reconstruction

Figure 18: Comparison with 3D scaffolds [Schmidt et al. 2009b]
(a). Input curves traced over a projection of a curve network pro-
duced with the scaffold (b). Our qualitatively similar results gener-
ated without the need for scaffolding (c).

(c) Our reconstruction

(a) ILoveSketch model (b) Traced-over curves

Figure 19: Comparison with multi-view framework [Bae et al.
2008] (a). Input curves traced over a projection of a curve network
produced with ILoveSketch (b). We achieve qualitatively similar
results from a single-view sketch (c).

Impact of Design Choices. Figure 15 demonstrates the impor-
tance of our design choices in producing plausible 3D reconstruc-
tions. Minimizing foreshortening while ignoring 2D-to-3D vari-
ation (Figure 15 (b, g)) leads to disastrous results. Minimizing
variation but ignoring foreshortening produces a more plausible but
foreshortened solution (Figure 15(d)) while appropriately account-
ing for both produces a result well aligned with viewer perception
(Figure 15 (e, h)). Figure 15 (i, j) shows the importance of tangent
parallelism in sketch interpretation. Figure 17 illustrates the impact
of inter-plane orthogonality and parallelism in undoing distortions
in sketches with large and inexact perspective.

Figure 5 and the angle histograms in Figures 1, 21, show the impor-
tance of progressive regularity detection and enforcement in propa-
gating sketch regularity across the curve network (often regularities
with small absolute error in the baseline reconstruction end up as in-
applicable, while others with higher error are eventually enforced).

Comparison to Prior Art. Figures 18 and 19 highlight our abil-
ity to generate models of equal complexity to those generated by
multi-view, e.g. [Bae et al. 2008], and scaffold-based [Schmidt et al.
2009b] methods, without the need for view rotations or meticulous
incremental scaffolding. We performed this comparison by picking
informative views for 3D outputs of these prior systems, and tracing
2D curves over them as our sketch input.

Methods such as [Tian et al. 2009; Wang et al. 2009] which tar-
get reconstruction of boxy CAD shapes dominated by straight-lines
and orthogonal features, as the authors acknowledge, cannot handle
design sketches of smooth free-form shapes (e.g. plane, vacuums,
game-pad) addressed by True2Form.

Our method is closer in spirit to CrossShade [Shao et al. 2012] but
is a significant advance, as illustrated by Figure 20. Our framework
is more generic, as Shao et al. recover 3D geometry only for planar
and orthogonal cross-section curves. On the vacuum example, only
the highlighted (red) subset of curves satisfies these requirements; it



(f) Input Sketch (g) Without minimal variation

(h) With minimal variation
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(i) Without parallel tangents (j) With parallel tangents

Figure 15: Evaluating design choices. (Top) reconstruction without and with variation minimization and foreshortening minimization on a
simple input. (Bottom) results without and with variation minimization and tangent parallelism.
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Figure 16: Our single-view modeling system allows us to reconstruct 3D models by tracing curves over existing sketches and photographs.
Camera sketch by Spencer Nugent®, Mixer sketch by Koos Eissen and Roselien Steur®, curves traced by the authors.

(a) Input Sketch (b) CrossShade result

(side view)

(c) Ours
(side view)

(d) Ours
(input overlay)

Figure 20: Comparison with CrossShade [Shao et al. 2012]:
CrossShade only reconstructs planar cross-section curves, the sub-
set of sketch curves in red. Curves are forced to align perfectly
with the sketch, which is undesirable in the presence of innacuracy
and perspective distortion (middle row). Finally, it encourages lo-
cal symmetry at all intersections, disconnecting the network in the
presence of non-geodesic curves such as the horizontal sections of
the rounded cone (bottom row).

alone does not provide enough information to intelligently recover
the full vacuum shape. In general, their method is unable to han-
dle models like the vacuum or spiral (Figure 12), which cannot be
described via planar curves alone. The curved surface patch (Fig-

ure 20, middle) shows the importance of allowing the projection
of the shape to deviate from the input sketch in order to correct
for artist inaccuracy. This correction is undesirable in the context
of CrossShade who reconstruct normal maps but is important for
believable 3D reconstruction. Lastly, the rounded cone (Figure 20
(bottom)) shows the drawbacks of using the approach of Shao et al,
even when all curves satisfy their constraints, as their approach of
softly enforcing symmetry everywhere at the expense of connectiv-
ity can break the model apart. Enforcing connectivity while softly
minimizing regularity everywhere is similarly undesirable (Figure
4). Our selective enforcement produces the desired 3D output.

8 Conclusions

Designers leverage descriptive curves to effectively convey 3D
information in 2D drawings. The implicit perceptual cues in
these sketched curve networks aid viewers in inferring free-form
piecewise-smooth shapes from line-drawings. We mimic the results
of this 3D shape inference by: the formulation of a set of regularity
properties; the progressive detection of regularity cues in an input
sketch, that is consistent with human perception; and the enforce-
ment of these applicable cues, to lift a sketch curve network into
3D, while preserving fidelity to the input sketch. We are able to re-
construct convincing 3D shapes from a single sketch, correcting for
inaccuracy and achieving geometric complexity well beyond prior
art.

Despite its benefits, our method has a few limitations. One, our ap-
proach relies on drawing from informative viewpoints. It is possible
to trick our algorithm into misinterpreting a sketch, just as it is pos-
sible to trick humans with trompe- [’oeil drawings. Sometimes for
complex models finding a single descriptive view that is comfort-
able for drawing is challenging. Using an incremental multi-view
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Figure 21: Additional results with representative regularizer value histograms on baseline and final models, highlighting the impor-
tance of the the iterative labeling in avoiding false positives and negatives. Gamepad, Tape Holder, Pencil Holder by Xch’e’ Hernandez
Simper® (green dot), via our interface. Other models were traced by the authors.
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(b) Too few interconnections

(a) Accidental viewpoint

(c) Non-orthogonal

smooth crossing
Figure 22: Our algorithm fails to reconstruct meaningful curve
networks when curves are drawn from accidental viewpoints (a),
when the network does not contain enough connectivity (b), or when
the curves violate principles of design sketching (c).

approach (Figure 13) or exploiting symmetry planes (Figure 1), can
help with this problem. Two, as our approach is purely geometric,
we require sufficiently descriptive and interconnected sketches to
produce desirable 3D output. Shape inference from sparse sketches
in particular, can benefit from prior knowledge of the 3D objects,
just as human interpretation of sketches draws upon their visual ex-
perience. Three, our set of sketch properties in Section 3 is not
exhaustive and can be extended to incorporate properties like equal
length curves or geometric primitives like circles.

Figure 22 spans the range of failure cases we have observed. Draw-
ing many curves from strongly foreshortened or accidental view-
points (Figure 22 (a)) results in poor reconstruction. Fixing this
failure case requires redrawing the model from a better view. For-
tunately, designers are taught to pick what we consider good views
[Eissen and Steur 2011]. Drawing too few interconnected curves
(Figure 22 (b)) prevents our algorithm from utilizing context well.
Such cases are easily fixed by adding curves, particularly smoothly-
crossing curves. Lastly, our algorithm is based on principles of
sketch understanding which if violated can produce undesirable re-
sults (Figure 22 (c)). Such cases require that the inconsistent curves
be removed or redrawn.

In summary, True2Form is arguably the first approach able to
infer plausible piecewise-smooth 3D shapes from general design
sketches. We believe that such approaches in the future, will play
an important role in the early stages of conceptual design.
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