Local Binary Patterns Calculated Over Gaussian Derivative Images

Varun Jain 1, * James L. Crowley 1 Augustin Lux 1
* Auteur correspondant
1 PRIMA - Perception, recognition and integration for observation of activity
Inria Grenoble - Rhône-Alpes, UJF - Université Joseph Fourier - Grenoble 1, INPG - Institut National Polytechnique de Grenoble , CNRS - Centre National de la Recherche Scientifique : UMR5217
Abstract : In this paper we present a new static descriptor for facial image analysis. We combine Gaussian derivatives with Local Binary Patterns to provide a robust and powerful descriptor especially suited to extracting texture from facial images. Gaussian features in the form of image derivatives form the input to the Linear Binary Pattern(LBP) operator instead of the original image. The proposed descriptor is tested for face recognition and smile detection. For face recognition we use the CMU-PIE and the YaleB+extended YaleB database. Smile detection is performed on the benchmark GENKI 4k database. With minimal machine learning our descriptor outperforms the state of the art at smile detection and compares favourably with the state of the art at face recognition.
Type de document :
Communication dans un congrès
ICPR 2014 - 22nd International Conference on Pattern Recognition, Aug 2014, Stockholm, Sweden. IEEE Computer Society, 2014, 〈10.1109/ICPR.2014.683〉
Liste complète des métadonnées

Littérature citée [30 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01061099
Contributeur : Varun Jain <>
Soumis le : vendredi 5 septembre 2014 - 10:04:24
Dernière modification le : mercredi 11 avril 2018 - 01:54:16
Document(s) archivé(s) le : samedi 6 décembre 2014 - 10:55:56

Fichier

5209d987.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Collections

Citation

Varun Jain, James L. Crowley, Augustin Lux. Local Binary Patterns Calculated Over Gaussian Derivative Images. ICPR 2014 - 22nd International Conference on Pattern Recognition, Aug 2014, Stockholm, Sweden. IEEE Computer Society, 2014, 〈10.1109/ICPR.2014.683〉. 〈hal-01061099〉

Partager

Métriques

Consultations de la notice

407

Téléchargements de fichiers

513