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Abstract—We present an approach to Intelligent Tutoring the Knowledge Tracingmethod introduced by [13] which
Systems which adaptively personalizes sequences of learningpyilds a detailed cognitive model of the student, of its learning
activities to maximize skills acquired by students, taking into processes and of the relation between this cognitive model
account the limited time and motivational resources. At a given d the involved activiti d KCs. This i dif cult
point in time, the system tries to propose to the student the an e Involved acliviues an S. IS IS a very dircu .
activity which makes him progress best. We introduce two Problem because the knowledge level of the students and their
algorithms that rely on the empirical estimation of the learning learning approach is hidden. Recent results include methods
progress, one that uses information about the dif culty of each to simultaneously discover the relation between activities and

exercise RIARIT and another that does not use any knowledge KC ([18], [3]), an alternative formulations such as the Additive
about the problem ZPDES. Factor Model [12]

The system is based on the combination of three approaches. . .
First, it leverages recent models of intrinsically motivated learn- In Fh's work we are more fOCl_JS_?d on tllleionng model|
ing by transposing them to active teaching, relying on empirical that is, how to choose the activities that provide a better

estimation of learning progress provided by specic activities |earning experience based on the estimation of the student
to particular students. Second, it uses state-of-the-art Multi- competence levels and progression, and some knowledge

Arm Bandit (MAB) techniques to ef ciently manage the explo- o . .
ration/exploitation challenge of this optimization process. Third, about the cognitive and student model. We can imagine a

it leverages expert knowledge to constrain and bootstrap initial Student wanting to acquire many different skills, e.g. adding,
exploration of the MAB, while requiring only coarse guidance subtracting and multiplying numbers. A teacher can help

information of the expert and allowing the system to deal with by proposing activities such as: multiple choice questions,
didactic gaps in its knowledge. abstract operations to compute with a pencil, games where
items need to be counted through manipulation, videos, or
others. The challenge is to decide what is the optimal sequence
Intelligent Tutoring Systems (ITS) have been proposed td activities that maximizes the average competence level over
make education more accessible, more effective and simultaag-skills.
ously as a way to provide useful objective metrics on learning There are several approaches to develduimring Model
(1], [21]). Recently, online learning systems have furthe& rst approach is based on hand-made optimization and
raised the interest in these systems [11], and several recemtpedagogical theory, experience and domain knowledge.
projects started on Massive Open Online Course (MOOC) fohere are many works that followed this line, see the recent
web-based teaching of university level courses. Researchsinveys on the eld by [20], [26]. A second approach considers
ITS includes many different aspects such as: interaction, isarticular forms of knowledge to be acquired and creates
structional design, generation of exercises, modeling of studelidactic sequences that are optimal for those particular classes
learning, optimizing teaching, among many other aspects. Fafrproblems [4], [17], [10]. Other approaches try to construct
a broad coverage on the eld of ITS see [20] and [26]. examples and/or exercises that optimize the training process
According to [26], there are four main components of aallowing to create new questions, or other activities, aimed
ITS: i) acognitive modethat de nes the domain knowledge ordirectly at solving the mistakes observed [28], [15], [10].
which steps need to be made to solve problems in a particuldre third approach, and more relevant for our work, is that
domain; ii) astudent modethat considers how students learnthe optimization is made automatically without particular
what is the evolution of their cognitive state depending omssumptions about the students or the knowledge domain.
particular teaching activities; iii) autoring modetthat de nes, The framework of partial-observable Markov decision process
based on the cognitive and the student model, what teach{RPMDP) has been proposed to select the optimal activities to
activities to present to students and iviiser interface model propose to the students based on the estimation of their level
that represents how the interaction with the students occafsacquisition of each KC [27]. In general the solution to a
and how problems are proposed to the learners. POMDP is an intractable problem and approximate solutions
A large body of work considered th€ognitive/Student have been proposed using the concept of envelope states
Model A seminal work for de ning the cognitive model is[8]. Other approaches consider a global optimization of the

I. INTRODUCTION



pedagogical sequence based on data from all the students uaisg known as the zone of proximal development [22]. Such
ant colony optimization algorithms [31], but can not providactivities typically create positive psychological states of ow
a personalized sequence. [14], themselves fostering learning, as exploited in several
Our ITS system aims at providing each particular student teducational approaches [30], [16].
activities that gives the highest learning progress. We do notOur main contributions, when compared to other ITS sys-
consider that these activities are necessarily the ones de rteths, are: the use of highly performing Multi-Armed Bandit
a-priori in the cognitive and student model, but the ones thalgorithms [9]; a simpler factored representation of the cog-
are estimated, at runtime and based on the students resultsitioge model that maps activities to the minimum necessary
provide the maximum learning gain. This approach has threempetence levels; and considering that the acquisition of
main advantages: a KC is not a binary variable but de ned as the level of
Weaker dependency on the cognitive/student moddh comprehension of that KC. The advantage of using MAB
most cases the tutoring model incorporates the student modethat they are computational ef cient and require a weaker
inside. For instance, in approaches based on POMDP, the ofdipendency between the tutoring and the cognitive and student
mization of teaching sequences is made by using as dynamiesdels. Other contributions include an algorithm to estimate
the student model. Given students' particularities, it is oftestudent competence levels; and the empirical learning progress
highly dif cult or impossible for a teacher to understand albf each activity. An extended version of this article is available
the dif culties and strengths of individual students and thusat [24] including an initial user study.
predict which activities provide them with maximal learning
progress. Also, typically, these models have many parameters, [I. TEACHING SCENARIO

and identifying all such parameters for a single student is a1 make the discussion more clear. we will describe a

very hard problem due to the lack of data, the intractability %fpeci ¢ teaching scenario. This scenario is about learning how
the problem and the lack of identi ability of many parameterg, ,se money, typically targeted to students of 7-8 years old.
[51. This often results in models which are inaccurate ifhe narameters of the activities are commonly used in schools
practice [6]. It has been shown that a sequence that is opti|gl 4cquiring these competences and there are already well
for the average student is often suboptimal for most student§, gied teaching sequences validated in several studies [29].
from the least to the most skilled [23]. _ In each exercise, one object is presented with a given tagged

We_ consider that |_t_|s important to be as mdependept_ rice and the learner has to choose which combination of
possible of the cognitive and student model when decidifg, . notes, coins or abstract tokens need to be taken from the
which activities to propose. This requires that the ITS explorg\;.a"et to buy the object, with various constraints depending on
and experiments various activities to estimate their pmem@lercises parameters. The ve Knowledge Components aimed
for learning progress for each student. The technical chaIIen&em these experiments are:

is that these experiments must be suf ciently informativ_e aboRtnOWMoney: Global skill characterizing the capability to
the st_udent's current compgtence-_ level and also to estimate the 4o money to buy objects in an autonomous manner;
effectiveness of each exercise to improve those COmpetenceg (g nteger. Capability to add and subtract integer numbers;
form of stealth assessment [32]). This boils down to what hgg,.omposelntegerCapability to decompose integer numbers
been called the “exploration/exploitation” trade-off in machmﬁ,]to groups of 10 and units;

learning, where we have to simultaneously try new aCtiVitiQosumCents: Capability to add and subtract real numbers
to know which ones are the best, but also select the best O%ts).

S0 thgt the stu_dgnt gctually learns. ) DecomposeCents Capability to decompose real numbers
Ef cient Optimization Methods We will rely on methods (cents);

that do not make any speci ¢ assumptions about how Studens o - capability to memorize a number which is presented
learn and only require information about the estimated Iearnlggd then removed from visual eld:

progress of each activity. We make a simple assumptionrye \arous activities are parameterized in order to allow

that e_lctivitit_as that are currently estimated to providel a go%dents to acquire a greater exibility in using money, and to
learning gain, must be selected more often. A very ef cientang, increase the number of KCs that are already mastered.
well studied .formallsm for these kind of problems is Mu'“"‘l’he interface used in the ongoing real experiments if presented
Armed Ban('jlts.[Q]. . . in Figure 1 whose parameters are the following:

Mo_re Motlv_atmg Experience Our z_;lp_proach C(_)n5|ders th"?‘tExercise Type We consider a parameterization of exercise
exercises which are currently providing the higher Iearmn[ es depending on the valdethat can be read directly by
progress must be the ones proposed. This allows not only king the correspondence to a real note/ain (1:2;5)
use more ef cient optimization algorithms but also to provid%ln those that need a decomposition that requires more than

a more motivating experience to students. Sever:al strands0 itemb = (3 : 4: 6:7: 8, 9). The exercises will be generated
work in psychology .[7] and neuroscience [19] nave argu choosing prices with these properties in a set of six levels
that the human brain feels intrinsic pleasure in practicin

activities of optimal dif Cu!ty or challenge, i.e. neithe.r.t.oo 1in the euro money system the money items (bills and coins) have the
easy nor too dif cult, but slightly beyond the current abilitiesyalues1, 2 and5 for the different scales.



of increasing dif culty and picking an object that is pricedentirely in activitya whichj th parameter value is;, as

realistically. shown in Table I. This factorization makes the assumption
Price Presentation i) written and spoken; ii) written; iii) that activity parameters are not correlated. This assumption
spoken is not valid in the general case, but has appeared true in
Cents Notatior i) xex; ii) x;xe particular applications we considered and may not signi cantly
Money Type: i) Real euros; ii) Money Tokens harm the dynamics of the whole system. The alternative would

require a larger number of parameters and would also require
more exploration in the optimization algorithm. We use the
factorized R Table in the following manner to heuristically
estimate the competence levgl(a) required in KC; to
succeed in an activity parameterized with

Ya

g(@= q(a)

j=1
B. Estimating the impact of activities over students' compe-
tence level in knowledge units

Key to the approach is the estimation of the impact of
each activity over the student's competence level in each
knowledge unit. This requires an estimation of the current
competence level of the student for ea€li;. We do not
want to introduce, outside activities, regular tests that would
[, ITS wiTH MULTI-ARMED BANDITS be specic to evaluate eacKC; since it would have a high
probability to negatively interfere with the learning experience
of the student. Thus, competence levels need to be inferred

Ig gener?(l, aCt'V't'T? may differ _3Ion? several ,d;]mens'qr{ﬁrough stealth assessment [32] that uses indirect information
and may take several forms (e.g. video lectures with questi ing from the combination of performances in activities and
at the end, or interactive games or exercises of various typegk R Taple speci ed above

Each activity can provide an opportunity to acquire different | ot ;s consider a given knowledge uritfor which the

skills/lknowledge units, and may contribute differentially tQ;,qent has an estimated competence level oivhen doing
improvement over several KCs (e.g. one activity may help g, activitya = (ay; :::;

. S 9 ) iy an, ), the student can either succeed or
lot in progressing irkC; and only little INKC ). Vice Versa, t4i |n the case of success, if the estimated competence level

succeeding in an activity may require to leverage differential|:¥ is lower thang (a), we are underestimating the competence
various KCs. While certain regularities of this relation may,q| of the student ifkC;, and so should increase it. If the
exist across individuals, it will differ in detail for every studentg; jent fails and; (a) < Ci, then we are overestimating the

Still, an ITS might use this relation in order to estimate thggmpetence level of the student, and it should be decreased.
level of each student. We will latter show how to furthefyihar cases provide little information, and thas is not

simplify this assumption. updated. For these two rst cases we can de ne a reward:
First, we model here the competence level of a student in

a given KC as a continuous number betwéeand 1 (e.g.0 r=gqg(a) ¢ 1)

means not acquired at al;6 means acquired at 60 percebt, and use it to update the estimated competence level of the

means entirely acquired). We denatethe current estimation stydent according to:

of this competence level for knowledge utiiC;. In what

we call a R Table, for each combination of an activayand G=G+ T ©)

a KCj, the expert then associatesgavalue ¢ (a)) which where is a tunable parameter that allows to adjust the

encodes the competence level required in #iS; to have con dence we have in each new piece of information. It also

maximal success in this activitg. This in turn provides a encodes that being always successful at a given actayity

upper and lower bound on the competence level of the studetdnhnot increase the estimated competence tgaboveq (a).

below g (a) in case of mistake; 2) abovg(a) in case of A crucial point is that the quantity; = g(a) ¢ is not

answering correctly. only used te update;, but is used to generate an internal
We start by assuming that each activity is represented twardr = ri to be cumulatively optimized for the ITS

a set of parametera = (a;;::;an,). The R Table then (details below). Indeed, we assume here that this is a good

uses a factorized representation of activity parameters, whardicator of the learning progress ov&C; resulting from

instead of considering alfa; KC;) combinations and their doing an activity with parametera. The intuition behind is

correspondingg (a), we consider only(a; ; KC;) combina- that if you have repeated successes in an activity for which

tions and their corresponding (a;) values, whereg(a) the required competence level is higher than your current

denotes the competence level KC; required to succeed estimated competence level, this means you are progressing.

Wallet lecation Object |location Information location

Repository location

Fig. 1. Interface used in the experiments with students.

A. Relation between KC and pedagogical activities



TABLE |
R TABLE INDICATING THE REQUIRED COMPETENCE LEVEL FOR EACH OF THBR KNOWLEDGE COMPONENTS TO SUCCEED AT EACH PROPOSED
ACTIVITY. EACH ACTIVITY IS PARAMETERIZED BY A SET OFM PARAMETERSA WITH DIFFERENT POSSIBLE VALUES AN ACTIVITY IS THUS

REPRESENTED AS A VECTORA = fal; ...;8m g OF PARAMETERS
KnowMoney | IntSum | IntDec | DecSum | DecDec | Memory
1 0,3 0.2 0 0 0 0.3
2 0,5 0.6 0.3 0 0 0.5
Exercise Tvoe| 3 0,6 0.7 0.6 0 0 0.5
YPe 4 0.8 0.7 0.6 0.4 0.3 0.7
5 0.9 0.9 0.8 0.7 0.6 0.8
6 1 1 1 1 1 1
S 0.9 1 1 1 1 1
Price Present.| W 1 1 1 1 1 0.6
S&W 0.8 1 1 1 1 0.2
X.xe 0.8 1 1 1 1 1
Cents Not. xex 1 1 1 1 1 1
Real 1 - - 0.9 0.9 1
Money Type | roken 0.1 - 1 1 1
Algorithm 1 Update competence level how much reward each bandit is giving. Then the algorithm
Require: Teaching activitya selects stochastically the teaching activities proportionally to
Require: Student SolutiorS the expected learning progress for each bandit.
1: Compute activity required competence leg¥a) In order to harness the combinatorial explosion of parameter
2r=0 values, we do not use one MAB for each activity but a set of
3 fori=1;:::;n;do simultaneous MAB for each parametgrsThe alternative of
4 ri=g(@ ¢ considering a given arm for each speci c combinatiarof
5. if CORRECT(S) and; > 0 OR WRONG(S) and; < parameters would increase the number of arms that would
0 then impact on the number of parameters, the amount of trials
6: G=G+ 1| required to estimate learning progress and thus the learning
7 r=r+r; time.
8 endif This follows the factorization already described before.
9: end for Each simultaneous MAB uses a bandit algorithm, derived from
10: return Vector of estimated competence levgt EXP4, presented in [25]. Each bandit expert tracks how much
11: return Total rewardr reward is provided by each activity parameter overkal ;.
Precisely, for each parameter valaewe de ne the quantity
w;j (a;) that tracks the recent rewards (correlate of learning
C. RIARIT Algorithm: Right Activity at Right Time progress) provided by activities using this parameter. Each

To add th timizati hall for ITS .lﬁime that such parameter is used, we update this value as
0 address the optimization challenge for , we will ), e W (a) w;(a)+ r,where and allow to

rely on state-of-the-art multi-arm bandit techniques (MAB)[9]de ne the tracking dynamics of the lter

These techniques were rst developed in machine learning O, any given time, we will sample. the value of each

solve the so-called “gambling machines” problem, where p?arameten’ according’tO'p- = wi(1 )+ where w
M I us |

player decides how to invest money in gambling machmegre the normalizedv; values to ensure a proper probability

whose payoff is unknqwn. Here,'we adapt such approad}%tribution, u is a uniform distribution that ensures suf cient
to the problem of optimal teaching, where the gambler arameter exploration and is the exploration rate. The
replaced by the teacher, the choice of machines is repla Séulting algorithm is shown in Algorithm 2

by a_choice of learning activity, and money is replaced by Expert knowledge can also be used by incorporatioarse
leamning Progress. ) ) lobal constraints on the ITS. Indeed, for example the expert
~ A particularity here is that the reward (leaming progresghq s that for most students it will be useless to propose
is non-stationary, which requires speci ¢ mechanisms 1o tragk o rcises about decomposition of real numbers if they do not
its evolution. Indeed, here a given exercise will stop prowdmlgq_ow how to add simple integers. Thus, the expert can specify

reward, or learning progress, after the student reaches a cerfgiRimal competence levels in give6C; that are required to
competence level. Also we cannot assume that the rewards &gy the ITS to try a given parametey of activities.

i.i.d. as different students will have different preferences and

many human factors, i.e. distraction, mistakes on using tRe ZPDES Algorithm: Zone of Proximal Development and
system, create several spurious effects. Thus, we rely hereFgRpirical Success

a variant of the EXP4 algorithm [2], [9] that considers a set of We will now present a variant of the algorithm that aims at
experts and chooses the actions based on the proposals of eaetoving the dependency on the R Table. The table is used to
expert. For our case the experts are a set of lters that trackmpute the reward for the bandit system and it is only domain



Algorithm 2 Right Activity at Right Time (RIiARIT) de ne. Another point is that there are some parameters that

Require: Set ofn, competence€ have clearly relation of increasing complexity (such as the
Require: Set of exercise witth, parameters parameter exercise type) and should be treated differently
Require: Set ofn, expertsw; than other parameters that do not have such ordering (for
Require:  rate of exploration instance the complexity in the modality presentation will
Require: distribution for parameter exploration, change depending on each student and not on the problem
1: Initialize estimated competence lewe! itself). A nal point is that we are choosing exercises based
2: Initialize value of expertsv; uniformly. on the estimated (recent) past learning progress, and if we
3: while learning do know which exercise is next in terms of complexity then
4. fGenerate exercisg: we can use that one. This information, if correct, allows the
5. fori=1:::n, do MAB to propose the more complex exercises without requiring
6 Wy = % to estimate their value rst. It also results in a sequence of
7. = W ("1 )+ exercises that is more natural and has less switches between
(| I u
8: Samplea; proportional top; levels.

This algorithm is identical to RIARIT but we treat the
parameters with an identi ed complexity order differently. For
the parametei, when the bandit level of parameter value
j is below the level of the more complex parameter value,
wi(j) < wi( +1)=, arlyj the success rate is higher than

9: end for

10: Propose exercise = (as;::;an,)

11:  Get Student Answer

122 Ck;r  Update competence level using Alg. 1
13:  fUpdate greedy expeyt

14: fori=1:::n, do a pre-de ned threshold @ |_; Ckf(') > |, we activate the
15: w; (a) wia)+ r parameter valug¢ + 3 with the following rulew;(j) =0 and
16:  end for wi(j +3)= wi(j +2).

17: end while

IV. SIMULATIONS

We start by presenting a set of simulations with virtual

dependent and not student dependent. Nevertheless, our i‘%%?)ﬁ?r:fn towgeséesgjtixst'g?flgeg'tﬁiﬁﬂglp;%%irlt;znzf Oc])(ur

is to reduce the dependency on the cognitive and StUd% udents to see how well the algorithm is able to select

models and so we will try to simplify further the algomhm'exercises adequate for each particular student. We note that the

Our simpli cation will take two sources of inspiratiorzone . . : : . S .
: o L algorithm itself is not provided with any a-priori information
of proximal development and theempirical estimation of :
about the properties of the students.

learning progress
As discussed before focusing teaching in activities that Student Simulation Model

are_prqviding more !eaming progress can act as a strongue consider two populations. A population "Q" where the
motivational cue. .E§t|mat|r)g explicitly how the success "l dents have different learning rates and maximum compre-
on each exercise is improving the competence level will aHOWension levels for each KC and another population "P” where,

to remove the dependency on the table. For this we replgfe, yqiction, the students have limitations in the comprehen-

Eq. 1 with: sion of speci ¢ parameterizations of the activities. We expect
_ X Ck Xd Ck that in the population "Q” an optimization will not provide
B T t d ®) big gains because all students are able to use all exercises to
k=t k=t progress. On the other hand, the population "P” will require
whereCy =1 if the exercise at tim& was solved correctly. that the algorithm nds a speci c teaching sequence for each
The equation compares the recent success (thedlastl particular student.
samples) with all the previous past, providing an empirical Our student model is a generalization of the one used
measure of how the success rate is increasing. We no longeiKnowledge Tracing theory [13]. In our formulation, the
estimate the competence level of the student (as in Eqg. 2), amthpetences are not just acquired or not, but are represented
directly use Eqg. 3 as the reward. as a continuous variable between 0 and 1 that shows how
The use of the zone of proximal development will providenuch the KC is mastered. For each student population, Q and
three advantages. Improve motivation as discussed befdPewe describe how we compute the probability of acquiring
further reduce the need of quantitative measures for the edutee next level of competence’, and the probability of
tional design expert; and provide a more predictive choice sblving an exercis@® that, in our case just depends on the
activities. We considered that the design expert would de rurrent competence level of the student, i.e. assuming that
a set of thresholds on the activity parameters that would p& = p(G) =1  p(S). In the standard KT formulation this
used to allow a new parameter value to be used. This numbegans that the probabilities of guessing or of not making a
are still dependent on the R Table and might be dif culnistake are de ned in the same way.
to de ne or, if there are too many activities, too costly to 1) Student Q:

r



P Student

ooggNumber of student doing each type at each time

a) Probability of solving an exerciseWWe de ne a pop-
ulation "Q” where the maximum achievable competence level
of each student follows a normal distribution. For a given KC ©
i, a student with competence levél, and an exercisa with
required competence level(a), as de ned in Section IlI-A.
We can compute the probability of solving exercisecor-
rectly: p©(a)= ( larctan( ((:,-Q G(a)+ ))+0:5) with

, and tunable variables with values of 0.1, 30 and 0.7
in our simulations. To ta e@' to account all KC we follow the
following rule: p©(a) = b i~ Pbi(a). As the previous rule
has a non-zero probability of solving even the most dif cult
exercises we include a tunable thresholdbetween 0 and 1
(0.1 in our simulation), that ip®(a) < , then probability of
success becomes zep¥, (a) = 0.

PreDe ne

ZPDES

b) Acquisition of KC: The probability of learning is
de ned as the probability of jumping to the skill level of =
the exercise being proposed. This probability depends on th%
difference between the current student's level and the requiredt

competence level of the exerciqegT @= 1 24c(a
Fig. 2. For each time instant, the curve show the total number of students

G )) with tunable variable, 0.6 in our simulation. Weestimated at being at the level required for the corresponding Exercise Type.

note that the competence level for each different KC evolves
independently.

2) Student P: B. Results

a) Probability of solving an exerciseAnother population We present here the results showing how fast and ef ciently
"P” provides a more sophisticated simulation of the cognitiveur algorithms estimate and propose exerci_ses at the correct
behavior of students. Here, the understanding of an exerci§¥€l of the students. Each experiment considers a population
depends on the parameters of each speci ¢ activity. For exafif- 1000 students generated using the previous methods and
ple, this corresponds to simulate a student that has dif Cu|{§ts each student solve 100 exercises. For all populations the
understanding a given type of representation but can s jfferent initial, maximum nal level of understanding of each
achieve the most dif cult exercise if a different representatioftC is sampled from a truncated gaussian distribution.For the
is used. For every parametey, each student has a xed population "P” the yalues of parameter's understanding are
level l;(a;) 2 [0:::1]. The probability thatpa@tudent correctlysampled from four different pro Ieg. _
solves an exercise is de ned @8 (a) = M Ti(a). To In order to evaluate our algorithms, we use as baseline
take into account their competence level on each KC we cog? optimized sequence created based on instructional design
bine the two probabilities gs° = pRp® . For this we combine theory, whose reliability has been validated through several
the probability of success based on their competence levegger studies, see [29]. This sequence grows in terms of
pQT but taking also into account their comprehension on ttf@mplexity of the problem and simultaneously in terms of the
particular exercise parameterizatipRi. For the experiments, dif culty of interaction.
we de ned several pro les representing students who: do not Figure 2 shows the evolution of the estimation of the
understand money or token representation; do not understatutents' competence level, corresponding to the exercise that
written prices; and do not understand fractional numbers. is being proposed to the learners (only showing the parameter

o o Exercise type). We can see that in general, RIARIT and ZPDES

b) Acquisition of KC: The acquisition of KC follows gtarts proposing more dif cult exercises earlier while at the
the principle of the previous modeling forQ”TQ" students fogame time keeps proposing the basic exercises much longer,
acquiring each competencg " (a) = p” (a)p;°’ (a) Another “matching the actual students level.q Figure 3 shows the skill's
dimension has been added to the "P" students, allowifg,e|s evolution during 100 steps. For Q student, learning
them the possibility to Iearn. how to understand the dlﬁerewith RIARIT and ZPDES is faster than with the prede ned
parameters. The understanding of each_parameter may iNCreaskience, but at the end, Prede ned catch up with ZPDES.
every time the student solves an exerciseywith that parameesy p simulations, as students can not understand particular
This probability is as followPa™ (a) = "¢ * piQT (a). parameter values, they block on stages where the prede ned
The understanding of parameter evolves independently Isgiquence does not propose exercises adequate to their level,
with the same probability. When they increase, the new valudile ZDPES, by estimating learning progress, and RiARIT,
is: li(a) = li(a)+ vi(L li(&)), with v; a tunable variable, by considering the estimated level on all KC and parameter's
0:001 in our simulations. impact, are able to propose more adapted exercises.
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Fig. 3. The evolution of the comprehension of two KC with time for

population "Q” and "P”. Markers on the curve mean that the difference is

signi cative (red : RiIARIT/ZPDES, black : ZPDES/Prede ned).
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Fig. 5. For each time instant, the curve shows the total number of students
that made the number of cumulative number of error (indicated in the colors).
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In this work we proposed a new approach to intelligent tu-
‘ | toring systems. We showed through simulations and empirical
.+ 1| results that a very ef cient algorithm, that tracks the learning
e nrogress of students and proposes exercises proportionally to
Fig. 4. Distribution of the acquired competence levels after 100 stepd€ learning progress, can achieve very good results. Using
represented as a boxplot indicating mean and the 4 quartiles. A statistigd baseline a teaching sequence designed by an expert in
signi cant difference exists if the notchs do not overlap. education [29], we showed that we can achieve comparable
results for homogeneous populations of students, but a great
gain in learning for populations of students with larger variety
of initial competence levels, and differences in the learning

Figure 4 shows the competence level of the students afé@iquisition due to each particular activity. In most cases, we
100 steps, represented as a standard boxplot. For "Q” and '$fowed that it is possible to propose different teaching se-
students, differences are statistically signi cative for almostuences that are fast to adapt and personalized. We introduced
all KC. RIiARIT gives better results than Prede ned due t&wo algorithms RIARIT that uses some information about the
its greater adaptation to the students' levels. We can ridfculty about the task, an another algorithm ZPDES that
distinguish between Prede ned and ZPDES. In the case @®es not use any information about the problem. It is expected
students of type "P”, RIARIT and ZPDES are both bettethat RIARIT, as it uses more information, behaves better when
than Prede ned. This is explained because when the studét& assumptions are valid, while ZPDES, without any informa-
is not able to understand exercises with a speci ¢ parameteti@n can not achieve as high performance in well behaved cases
pre-de ned sequence can not adapt and propose an alternaéeis surprisingly good without any information. Even when
path. We can also analyze the errors that the students margpared with a hand optimized teaching sequence ZPDES
during learning because if the exercises are too dif cult t8hows better adaptation to the particular students' dif culties.
solve there will be many errors and this can be a source ofThere are several directions of future work for this research
frustration. Figure 5 shows that for both types of students, iacluding: a better validation of the impact of personalization,
the beginning, the number of errors is equal among methadsparticular using our algorithm, for students; a comparison
but with time, prede ned sequence gives rise to more errovgth other methods; and exploiting other sources of informa-
than when using RIARIT or ZPDES, in particular for "P"tion. An initial user study is reported in [24].
students, providing a less enjoyable learning experience. AndCurrently we are studying different teaching scenarios to
for "P” simulation, students have less errors with RIARIT thabetter identify in which situations our method provides higher
with ZPDES, showing that RIARIT has a better adaptation thayains and where it can be easily deployed. The advantage of
ZPDES. our system is that it has much less assumption in relation to the
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cognitive/student model but for this it requires to empiricallyi3] A.T. Corbett and J.R. Anderson. Knowledge tracing: Modeling the
evaluate the teaching gain of each activity. For this we expect acquisition of procedural knowledgélser modeling and user-adapted
it to be useful in situations where there are many interactiolll'ﬁ]

with the tutoring system and with simpler exercises. It wi
be more suited to thener loop i.e. within-activity, of the [15]
ITS than to theouter loop i.e. across-activity, see de nitions

in [20]. The comparison with other methods is very dif cult[16]
due to the different assumptions made by each of them. If

we

have access to a well-identi ed cognitive/student modgl,

for populations of students with large variations, we might
expect approaches based on POMDP to work best. But, f&f

the contrary case, we expect our approach to better address

the identi ability problems and the variations in the studerto]
population.

We took a different approach than the one commonly used
in KT by considering a continuous level for which a giver20]
KC is acquired and not just a boolean variable. This extension
reduces the number of KC to de ne. It is important to see thgy
impact of this new approach and compare it with the standard
KT model. [22

Another interesting direction would be to exploit the clus-
tering that our algorithm implicitly produces in the teaching?3l
sequences. We could transfer information from one student to
another based on similarities detected at runtime. We see t2af Manuel Lopes, Benjamin Clement, Didier Roy, and Pierre-Yves

our algoritms provide sequences that cluster students based on
their characteristics [24].
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