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Abstract

In this paper we propose an approach for integrated volume segmentation and multi-

atlas registration. The aim is to recover simultaneously all atlas deformations along

with a segmentation mask that imposes consistency between their deformed segmen-

tation maps. This is modeled through a pairwise graphical model where deformation

variables are coupled with segmentation ones. Optimization via dual decomposition is

used to recover the optimal solution of the method. Promising results on the IBSR dataset

demonstrate the potential of our method where improvement is obtained when comparing

to the post-registration label fusion.

1 Introduction

Segmentation is a well studied problem in medical imaging and computer vision. Despite

the maturity of the field, segmenting multiple anatomical structures remains a challenging

problem. Atlas-based segmentation [11] that addresses this problem through the registration

of an atlas, and the associated annotation, to the query image has gained popularity in recent

years due to the advance of registration methods. Nonetheless, this approach is limited with

respect to the spectrum of variations that can be captured by the atlas.

Aiming to address this limitation, approaches that employ multiple atlases have been pro-

posed. In this scenario, multiple registrations are performed resulting in multiple segmenta-

tion hypotheses. The final segmentation is produced by subsequently fusing the hypotheses

either in a local [2, 6] or a global [1] fashion. Fusion strategies vary from simple majority

voting to more sophisticated probabilistic frameworks [10, 13]. In general, the segmentation

problem is solved in two discrete steps and registration is merely seen as a fixed preprocess-

ing step. In this setting, the registration process does not profit from the segmentation fusion

since it is not allowed to be updated towards refining correspondences and segmentation

hypotheses.

c© 2014. The copyright of this document resides with its authors.

It may be distributed unchanged freely in print or electronic forms.
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In this paper, we aim to couple registration and segmentation problem through a unified

formulation for multi-atlas segmentation. Registration terms seek optimal visual correspon-

dences between atlases and target volumes while imposing smoothness. Segmentation terms

seek voxel-wise consensus on the labeling of the target with respect to the deformed segmen-

tation maps. Prior per voxel probabilities, produced by learning of local features, are taken

into account in a seamless manner. In order to mathematically formulate these components,

we adopt a pairwise Markov Random Field (MRF) graphical model where each atlas is as-

sociated with a deformation field, while the target image is associated with a segmentation

map. Let us note that a similar approach was recently proposed by [4]. This approach is

different from the proposed one in two regards: i) it employs an Expectation-Maximization

framework for parameter optimization, and ii) it does not take into account discriminatively

learned voxel likelihoods.

The remainder of this paper is organized as follows: Sec. 2 presents the theoretical model

of our approach, while Sec. 3 discusses its discrete variant. Experimental results are part of

Sec. 4, and discussion concludes the paper.

2 Problem Formulation

Without loss of generality, let us consider N annotated images which form the set A =

{A0, . . . ,AN−1}. Each image comes with a corresponding segmentation mask where the

anatomical regions of interest have been annotated, forming the set S= {S0, . . . ,SN−1}. Each

voxel in the segmentation image is assigned to a segmentation label corresponding to one of

M anatomical classes, Si(x) ∈ {0, . . . ,M−1}. As input, an image I is given to be segmented

into anatomical regions. Henceforth, we are going to interchangeably refer to this image as

either target or query image. The segmentation mask, SI along with a set of deformation

fields D = {D0, . . . ,DN−1}, where Di denotes the deformation field mapping Ai to I are the

outputs to our problem.

2.1 Method Outline

In the standard multi-atlas registration framework, the set of deformation fields is commonly

estimated during an initial step by maximizing an intensity-based image similarity criterion,

while penalizing non-smooth configurations. The proposed method simultaneously opti-

mizes for the parameters of the final segmentation SI as well as the set of deformation fields

D. The estimation of the deformation fields is also guided by the fusion result. Our basic

premise is that the combined strategy that allows the two problems to interact will lead to

increased segmentation accuracy by introducing agreement between the segmentations pro-

posed by each atlas. Last, we also propose to take into account class specific appearance

priors when optimizing for the final segmentation SI . The idea behind incorporating prior

segmentation probabilities is motivated by the fact that image registration is often trapped in

local minima. This is particularly true in areas of high anatomical variability like brain cortex

where appearance information is a more reliable cue and can robustly guide segmentation

[14].
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2.2 Continuous Energy Formulation

We formulate our problem as an energy minimization one. The proposed energy consists

of three components: 1) a registration component comprising a matching term (M), that

quantifies the level of alignment between each atlas and the query image, and a regularization

term (R) that enforces the smoothness of the deformation field; 2) a segmentation component

comprising an appearance prior term (SP), that measures the log-likelihood of segmentation

with respect to the probabilities learned during a training phase. 3) a coupling term (C) that

takes into account the labeling that is proposed by the atlases and encourages their agreement

with the estimated segmentation SI . The energy has the following form:

E(D,A,S,SI) = M(D,A, I)+R(D)
︸ ︷︷ ︸

Registration

+ SP(SI , p)
︸ ︷︷ ︸

Segmentation

+C(D,A, I,S,SI)
︸ ︷︷ ︸

Coupling

(1)

2.2.1 Registration

Matching criterion Given any dissimilarity intensity-based criterion ρ , the matching term

takes the following form:

M(D,A, I) =
N−1

∑
i=0

∫

Ω
ρ(I,Ai ◦Di(x))dx. (2)

This term is the summation of the independently evaluated dissimilarity criteria between all

atlases and the query image I.

Deformation smoothness Given a smoothness inducing function ψ , the regularization

term takes the following form:

R(D) =
N−1

∑
i=0

∫

Ω
ψ(Di(x))dx. (3)

In other words, this term evaluates the smoothness of all deformation fields mapping from

an atlas to the target image and sums the independent evaluations.

Transformation model In this work, the popular Free Form Deformations (FFDs) trans-

formation model [8, 12] is used. Free Form Deformations parametrize the transformation

D j(x) by a linear combination of K control points:

D j(x) = x+
K−1

∑
i=0

ωi(x)φi, (4)

where φi is the displacement of control point i and ωi(x) is the weighting function corre-

sponding to point i. In the current approach we will use N uniformly distributed grids of

control points over the image domain (one corresponding to each atlas) and cubic B-splines

as the weighting functions.
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2.2.2 Segmentation

Segmentation Prior The quality of the segmentation hypotheses, that are provided by the

estimated deformation of the given atlases, is conditioned upon the quality of the registration.

Image registration is often overwhelmed when trying to establish correspondences between

highly variable anatomical regions leading to inaccurate results. In these cases, one can

exploit additional more robust cues to enhance segmentation estimation. Local appearance

provides complementary information that can be incorporated into the segmentation mod-

eling energy terms. Assuming a probability function on the candidate labeling of the form

πx(l) where l ∈ {0, . . . ,M−1} we wish to penalize all segmentations that go against prior

information:

SP(SI ,π) =
∫

Ω
−log(πx(SI(x))). (5)

Such probabilities can be learned using any modern classification method.

2.2.3 Coupling

In standard multi-atlas frameworks, fusion strategies follow multi-atlas registration in order

to estimate the segmentation of the target image. These fusion strategies take into account the

level of agreement between the hypotheses derived from the registered atlases to attribute a

label. In this work, we close the circuit between multi-atlas registration and label fusion. We

allow segmentation to influence registration. By imposing agreement between the segmen-

tation estimate and the atlas hypotheses, improved segmentation accuracy can be achieved

through the refinement of the registration result.

The above is modeled by means of introducing a third term in the energy. This term

penalizes deformations that lead to disagreement between the hypotheses and the estimated

segmentation in a robust manner.

C(D,A, I,S,SI) =
N−1

∑
i=0

∫

Ω
ρ̂(I,Ai ◦Di(x))κ(Si ◦Di(x),SI(x))dx, (6)

where κ(a,b) is a penalizing disagreement function, for which we assume κ(a,a) = 0 and ρ̂

is a similarity function allowing for atlases that match well the query image to influence more

the segmentation variables. As widely used by label fusion schemes [2], this term acts as a

sort of soft local atlas selection. In the context of the proposed method, it allows coupling

information to be shared by atlases whose registration to the query image is locally reliable.

3 Markov Random Field Formulation

We use Markov Random Field (MRF) theory to formulate the above minimization problem

in a discreet context. The problem is represented by a graph G = (V,E), where V denotes

the set of nodes that encode the latent variables, and E the set of edges that encode the

interactions between the variables.

The graph is associated with an energy of the form:

EMRF(l) = ∑
p∈V

gp(lp)+ ∑
(p,q)∈E

fpq(lp, lq) (7)
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where random variables p take values from a discrete set of solutions L, gp(lp) measures

the cost of assigning a value lp to the variable p and fpq(lp, lq) is a pairwise function that

determines the cost of assigning different values lp and lq to the variables p and q.

3.1 Graph Structure

The constructed graph should encode the multi-atlas registration, the segmentation and the

constraint that integrates the two problems. Let us see now how the graph is constructed to

achieve this.

Multi-Atlas Registration Let us recall that the deformation model is parametrized by N

deformation grids. This is encoded in the MRF graph G by a set of N isomorphic grid graphs

GD = {GD0
, . . . ,GDN−1

}. For every control point in the deformation grid superimposed onto

image Ai, there is a node p ∈ VDi
that represents its displacement. The edge system of each

grid EDi
is created by a regular connectivity scheme. Edges encode interactions between

random variables. The solution space around a control point is quantized and indexed by

a discrete set of variables LD. This set represents possible control point displacements We

refer to a potential control point displacement attributed to a deformation node by ld .

Segmentation A set of nodes VS is employed to represent segmentation. Each node p ∈VS

corresponds to a random variable. The set of possible solutions LS represents the set of

anatomical regions augmented by the background label. We refer to a potential anatomical

label attributed to a segmentation node by ls.

Integrated Segmentation and Multi-Atlas Registration Integrating segmentation and

multi-atlas registration is achieved by coupling segmentation and deformation variables. The

set of edges EC connects nodes of VS with nodes of the set VD. Nodes coming from different

graphs are connected if they have common image support.

3.2 MRF Energy

The continuous energy in Eq. 1 is mapped to a discrete MRF energy of the form in Eq. 7.

In brief, we will map i) the matching term M (Eq. 2) to the unary potentials of deforma-

tion variables (Eq. 8), ii) the deformation smoothness penalty term R (Eq. 3) to pairwise

potentials between deformation variables (Eq. 9), and iii) the coupling penalty C (Eq. 6) to

pairwise potentials between deformation and segmentation variables (Eq. 11).

3.2.1 Multi-Atlas Registration

Multi-atlas registration is performed by registering in a pairwise fashion all atlases to the

target image. Formulating pairwise registration in a discrete setting has been shown in [5].

For completeness reasons, we briefly discuss here how the matching term M and the regu-

larization term R of Eq. 1 are mapped to unary and pairwise potentials.

For the matching term, we are interested in quantifying how well the assignment of a

displacement label ld
pi
∈ LD to a node p ∈ VDi

aligns atlas Ai to the target image. This is
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Segmentation Agreement

Deformation Smoothness

Matching

Segmentation prior

{Deformation 
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Figure 1: Graph structure. Different colored edges / nodes correspond to different types

energies. Note that nodes from different deformation grids are not directly connected. Only

edges connecting a single deformation node from each grid to the segmentation variables are

shown for clarity.

measured by the following unary potential:

gM
pi
(ld

pi
) =

∫

Ω
ω̂pi

(x)ρ(Ai ◦D
ld
pi

i , I(x))dx. (8)

D
ld
pi

i is the transformation induced by the movement of the control point p in the ith defor-

mation grid by the displacement ld
pi

. The weighting function ω̂pi
determines the contribution

of the point x to the unary potential of the control point p. This function is similar to the ω

weighting functions used in the FFD deformation model (Eq. 4).

Regarding the regularization term, [5] shows that it can be efficiently modeled by pair-

wise potentials. A discrete approximation of the gradient of the spatial transformation can be

computed by taking the vector difference between the displacements of neighboring nodes

that belong to the same deformation grid:

f R
piqi

(ld
pi
, ld

qi
) = ‖d

ld
pi −d

ld
qi ‖, (9)

where d
ld
pi is the displacement applied to node p in the i-th deformation grid, indexed by ld

pi.

3.2.2 Segmentation

In order to assign a class label to every voxel of the target image, we take into account the

learned appearance model for every class. The appearance model is encoded in the form of a

probability distribution πx(l) and can be naturally incorporated in the MRF model by setting

the unary potentials of the segmentation grid for every label to the negative log-probability

of the respective class:

gSP
qS
(ls

qS
) =

∫

Ω
ω̂qS

(x)(−log(πx(l
s
qS
))). (10)
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where ω̂qS
(x) denotes the support of the segmentation node. For our experiments we have

corresponded each segmentation node to a voxel, but a coarser or softer assignment could be

envisaged.

3.2.3 Integrated Segmentation and Multi-Atlas Registration

We want to encourage the agreement between the estimated segmentation and the warped

segmentation mask. Thus, we will penalize control point displacements of grid GDi
that

result in the warped segmentation mask corresponding to atlas i not agreeing with our final

segmentation:

f C
piqS

(ld
pi
, ls

qS
) =

∫

Ω
ω̂qS

(x)ω̂pi
(x)ρ̂(Ai ◦D

ld
pi

i , I(x))Ind(Si ◦D
ld
pi

i (x), ls
qS
)dx (11)

where pi belongs to the grid GDi
and qS belongs to GS. Ind(x,y) = 1 except from Ind(x,x) =

0. Note that this potential is non zero only for pairs of segmentation/deformation nodes that

share some common support in the image domain, i.e., when ∃x | ω̂qS
(x) 6= 0, ω̂pi

(x) 6= 0.

3.3 MRF Optimization through Dual Decomposition

DD-MRF [7] has been introduced as a framework for MRF optimization, offering global

optimality guarantees. Its flexibility in terms of possible energy types, its ability to report the

quality of the final solution as well as its optimality guarantees are the merits we considered

in opting for its use. DD-MRF works by receiving as input a decomposition of the initial

graph (primal problem) into subgraphs (dual problems). It initializes the costs of the dual

problems using the costs of the primal problem. It then proceeds by iteratively finding a

global optimum for each subproblem, compare the subproblem solution and update their

costs. The way dual costs are updated guarantees that the euclidean distance of the current

solution to the set of the globally optimum solutions will decrease monotonically.

Subproblem decomposition To optimize graph G, DD-MRF requires as input as set of

subproblems SD = {SDi, · · ·SDn}, such that: G =
⋃

i SDi. We decompose the problem into a

series of subproblems which can be exactly optimized through dynamic programming. The

grid subgraph GDi
will be decomposed into chain subproblems. CDi

will represent the result

of this decomposition, where every element of the set corresponds to a chain subproblem.

The agreement term is incorporated into tree subproblems. There is one such subproblem

per segmentation node. It consists of the segmentation node, the deformation nodes to which

it is connected, as well as the edges connecting them . Tree subproblems form the set TS.

Thus, our subproblem decomposition will be: SD = {TS,CD0, . . . ,CDN}.

4 Validation

We have validated our method using data available on the Internet Brain Segmentation

Repository (IBSR). We specifically use the skull stripped version of the dataset provided

in [9]. The dataset consists of 18 T1-weighted MR Images with 1.5mm slice thickness.

Images and masks have been linearly registered and cropped to 145×158×123 from their

initial resolution of 256×256×128. We have made experiments with fully annotated images

(35 annotation types on average per image). Atlases have been pre-registered in all possible
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Figure 2: Left: Overlap results (DICE coefficient). Right: Overlap gain per registration com-

paring to the majority voting of the decoupled model for ’Labeling’ ’Local’ and ’Majority’

and their corresponding results for ’Inter’ and ’Atlas’. Refer to the Results Discussion in

Chapter 4 for information on the types of results presented. ’coupled’ refers to the method

presented while ’decoupled’ refers to the result of independent pairwise registration.

combinations using highly regularized deformable registration to find the ones closer to an-

other. A weighted sum of harmonic energy and global data cost have been used to rank them.

Experiments have been conducted using the 6 and 10 closest atlases to each target image.

Registration parameters The same iterative procedure as [5] has been used in order to

best cope with the computational efficiency vs accuracy trade-off. Dense deformation fields

are produced by control point displacements using Cubic B-Spline functions. For all reg-

istrations we use two levels of deformation control points (15× 18× 14 and 29× 35× 27).

We use the deformation fields produced by the coarse level to initialize the finer one. For

deformation nodes, candidate displacements span regularly over each axis, 12 per axis for a

total of 37. For each control point level we iterate 5 times reducing with each iteration the

area of candidate displacements by a factor of 0.66. Normalized Cross Correlation (NCC) is

the dissimilarity function (ρ) used for the matching criterion in all experiments. (1−NCC)2

was used as the similarity function (ρ̂).

Segmentation Likelihoods Training has been conducted by leaving out the target image

from the training set. The following configuration has been used to learn prior per voxel

likelihoods: For each training set image we sampled up to 150 samples belonging to each

label and then sampled in a spatially uniform manner another 15000 samples avoiding dupli-

cates. Three types of features were used: i) median,entropy,standard deviation, kurtosis and

skewness sample statistics on a 3D patch with sides of 5, 7 and 9 voxels ii) Gabor features

using 6 per axis orientantions and 3 scales iii) HOG3D features on a 11x11x11 patch broken

up to 8 (2 per dimension) subpatches using 4 orientations iv) normalized voxel positions

and distance from the center voxel. The total size of the feature vector was 258. We use

the Random Forest framework [3] to discriminatively learn local per voxel probabilities for

our target image. We used 200 trees of maximum depth 20 and opted to stop splitting at 20

samples per node.
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Figure 3: Visual results. 1st row : Ground truth. 2nd row: Segmentation node labeling. 3rd

row: Locally weighted fusion using deformations produced by the decoupled model. 4th

row: Majority voting fusion using deformations produced by the decoupled model.
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Optimization convergence Concerning DD-MRF convergence, we consider further op-

timization iterations useless when the mean change rate of the primal dual gap computed

over the last 10 iterations reaches the 10% of the mean change rate of the primal dual gap

computed over all iterations.

Decoupled Model As a baseline to compare to we consider N pairwise registrations with

identical parameters as the ones already presented, optimized in the same manner as our

method. A way to think of these registrations is as if there were no segmentation variables

and we had N separate (decoupled) deformation grids.

Results Discussion Fig.2 presents overlap results of certain types. Local corresponds to

deformed atlases fused using local weighted voting where the same similarity criterion as

the one used in registration has been employed. Majority corresponds to deformed atlases

fused using majority voting. Labeling corresponds to the labeling of the segmentation nodes

as given by our method. Class_argmax corresponds to the most probable label per voxel as

given by the Random Forest output. Atlas corresponds to the mean overlap of each deformed

atlas compared to the ground truth. Inter corresponds to the mean overlap of every possible

comparison between deformed atlases. Please note here that the reported standard deviations

of the absolut overlap results (Left of Fig.2) are overwhelmed by the intra-variability of the

dataset. Overlap gain results (Right of Fig.2), computed over the results of the decoupled

model, provide more insight on the statistical properties of the method.

Figures from the fully annotated 6 atlas case in Fig. 2 strongly support that the en-

forced agreement constraints enhance pairwise registration: overlap is clearly improved

(0.70± 0.02 from 0.68± 0.02 with a gain of 0.023± 0.004) while the resulting deforma-

tion fields are much smoother (harmonic energy of 0.58±0.02 for our method comparing to

0.63± 0.03 for the decoupled registrations with a gain of −0.04± 0.008). At this point let

us recall, that segmentation through registration draws its power from the common spatial

structure of the query and atlas images. Combining segmentations from different structures

of many images solely based on good intensity based matchings, while beneficial for the

mean overlap, reduces the reliability of the resulting segmentation. Our method has a sub-

stantial impact on the agreement between atlases (0.715± 0.01 mean Dice of all posible

registrations between atlases for our method, comparing to 0.66± 0.015 for the decoupled

case with a gain of 0.053± 0.004) producing concordant pairwise registrations, while out-

performing the label fusion methods in segmentation accuracy. Using the 10 closest atlases

increases overlap as expected while retaining the trends established by the 6-atlas case.

Visual results from the 6 atlas case in Fig. 3 verify further our method’s properties. It is

easy to see that the agreement constraints create, while no explicit smoothness term is present

in the energy function, much smoother results by disallowing aggressive displacement fields

that might correspond well visually but are not in accordance with the atlas group consensus.

5 Discussion and future work

In this paper, we presented a method that integrates registration and segmentation fusion. The

proposed approach allows registration parameters to be updated based on the segmentation

estimation. As a consequence, the quality of the obtained matching is refined, resulting in

increased segmentation accuracy. The experimental results demonstrate the potential of the

proposed approach.
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