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A Cancellation Operator Suitable for

Identification of Nonlinear Volterra Models
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LAAS - CNRS, Université de Toulouse.

Abstract

We present a new identification method for nonlinear possibly singular
Volterra models based on a suitable operatorial transformation of the prob-
lem with the property that some nonlinear terms are cancelled, allowing to get
an equivalent formulation well adapted to least square identification.
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1 Introduction

Consider a nonlinear Volterra model of the form:
H(∂t)X = F (X) +G(X)u, (1)

where u(t), X(t) ∈ R, t > 0, F and G are possibly singular functions defined on R,
and H(∂t) is an invertible causal convolution operator of diffusive type [3] such that
|H(iω)

ω | → 0 when |ω| → ∞. We suppose that problem (1) is well-posed.
Let ψX the γ-diffusive representation ofX, that is the unique solution of the following
problem on (t, ξ) ∈ R

+∗ × R [3]:
∂tψX = γ ψX +X, ψX(0, .) = 0, (2)

with γ : R −→ C
−. With μ the γ-symbol associated with H(∂t)◦∂−1

t , the γ-diffusive
formulation of equation (1) is [3]:

〈μ, γ ψX +X〉Δ′
γ ,Δγ

= F (X) +G(X)u. (3)

The problem under consideration in the sequel is to build estimations of H(∂t) via
the identification of the γ-symbol μ of H(∂t) ◦ ∂−1

t from (noised) data (X̃, ũ) =
(Xk + ηk, uk)k=1:n,with (Xk, uk) solution of (1) and ηk continuous measurement
noises.

2 The Dε-transformed problem

Given X,Y two Banach spaces, let (x, y) ∈ (
C0([t0, T ];X)

)n×(
C0([t0, T ];Y)

)n and
ε ∈ R

+; we denote:

Ωx,ε :=
⋃

i,j
{(i, j)} × Ωi,j

x,ε, where Ωi,j
x,ε :=

{
(t, τ) ∈ [t0, T ]2;

∥∥xi(t) − xj(τ)
∥∥ � ε

}
.

The ε-cancellation operator Dε is defined by:
(x, y) �→ Dε (x, y) : Ωx,ε → Y

(i, j, t, τ ) �→ yi(t) − yj(τ ).
(4)
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Proposition 2.1. (1) Dε is continuous. (2) For any continuous f : X0 ⊂ X → Y,
we have the cancellation property : D0 (x, f ◦ x) = 0.

Thanks to proposition 2.1 and by application of operator D0(X, .) to both mem-
bers of the equation, model (3) is rewritten (n = 1):

{ 〈μ,D0 (X, γ ψX +X)〉 = D0 (X,G(X)u)
〈μ, γ ψX(t0, .) +X(t0)〉 − F (X(t0)) = G(X(t0))u(t0).

(5)

The interest of this new formulation is that up to the quantity F0 := F (X(t0)),
the γ-symbol μ can be identified independently of F by (for simplicity, G is here
supposed to be known):

(μ∗, F ∗
0 ) = Y†

ε

(
Dε (X̃,G(X̃)ũ), G(X̃(t0))ũ(t0)

)
,

where Y†
ε is the pseudo-inverse, in a suitable sense, of the operator Yε defined by:

(μ,F0) �→
(〈
μ,Dε(X̃, γ ψX̃ + X̃)

〉
, −F0 +

〈
μ, γ ψX̃(t0, .) + X̃(t0)

〉)
. (6)

By means of standard regression methods, the function F can then be easily
estimated from the ”pseudo graph” of F :

GF =
⋃
k,j

{(
X̃k(tj),

〈
μ∗, γ ψX̃k(tj , .) + X̃k(tj)

〉
−G(X̃k(tj))ũk(tj)

)}
. (7)

3 A concrete example

This method has been tested on data elaborated from numerical simulation of the
following model of spherical flames [2]: X ∂

1/2
t X = X ln(X)+u, u � 0, X � 0. The

identified symbol H∗(iω) =
∫ μ∗(ξ)

iω−γ(ξ)dξ [3] and function F ∗ are given here-after.
More details and extensions will be found in [1] and in a further publication.
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(a) Frequency response of H∗(iω).
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(b) Identified F ∗.
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